-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathlightnet.py
208 lines (178 loc) · 7.92 KB
/
lightnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
# ["You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet"](https://arxiv.org/abs/2405.21022)
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from fla.modules import FusedRMSNormGated, ShortConvolution
from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear
from fla.ops.gla import chunk_gla, fused_recurrent_gla
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
from fla.models.utils import Cache
class LightNetAttention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
gate_low_rank_dim: int = 128,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> LightNetAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
if expand_ratio is None and num_heads is not None:
expand_ratio = hidden_size // num_heads
elif expand_ratio is not None and num_heads is None:
num_heads = hidden_size // expand_ratio
elif expand_ratio is None and num_heads is None:
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.key_dim = int(self.num_heads * self.expand_ratio)
self.value_dim = hidden_size
self.gate_low_rank_dim = gate_low_rank_dim
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_f_dim = self.expand_ratio
self.head_i_dim = self.hidden_size // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None)
self.g_proj = nn.Sequential(
nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
nn.Linear(gate_low_rank_dim, hidden_size, bias=False)
)
self.g_norm = FusedRMSNormGated(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
eps=norm_eps
)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
cu_seqlens = kwargs.get('cu_seqlens', None)
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(
x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
k, conv_state_k = self.k_conv1d(
x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
v, conv_state_v = self.v_conv1d(
x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
q = F.silu(q)
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k))
v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim)
# TODO: this 2 steps took huge amount of time, which should be optimized
z = k.float().logcumsumexp(1)
if cu_seqlens is not None:
raise NotImplementedError("LightNet does not support variable-length sequences for now.")
k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype)
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(
q=q,
k=k,
v=v,
gk=g,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(
q=q,
k=k,
v=v,
g=g,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[1]
)
o = rms_norm_swish_gate_linear(
rearrange(o, 'b t h d -> b t (h d)'),
self.g_proj(hidden_states),
self.g_norm.weight,
self.g_norm.bias,
self.o_proj.weight,
self.o_proj.bias
)
return o, None, past_key_values
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_i_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size