-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathrebased.py
130 lines (115 loc) · 4.47 KB
/
rebased.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
"""
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
"""
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules.feature_map import RebasedFeatureMap
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
from fla.ops.rebased import parallel_rebased
class ReBasedLinearAttention(nn.Module):
def __init__(
self,
hidden_size: int,
l_max: int = 2048,
feature_dim: int = 16,
num_key_value_heads: int = 16,
num_heads: int = 16,
use_gamma: Optional[bool] = True,
use_beta: Optional[bool] = True,
normalize: Optional[bool] = True,
causal: bool = True,
eps: float = 1e-5,
mode: str = "parallel",
layer_idx: Optional[int] = None,
**kwargs
) -> ReBasedLinearAttention:
super().__init__()
self.hidden_size = hidden_size
self.l_max = l_max
self.mode = mode
assert self.mode in ["fused_chunk", "parallel", 'chunk']
self.feature_dim = feature_dim
self.num_key_value_heads = num_key_value_heads
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_key_value_heads
self.use_gamma = use_gamma
self.use_beta = use_beta
self.normalize = normalize
self.causal = causal
self.eps = eps
self.mode = mode
self.layer_idx = layer_idx
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.dropout = nn.Identity()
def forward(self, hidden_states: torch.Tensor, **kwargs):
mode = self.mode
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
if mode == "fused_chunk":
o = fused_chunk_linear_attn(
q=q,
k=k,
v=v,
normalize=True,
scale=1,
)
elif mode == 'chunk':
o = chunk_linear_attn(
q=q,
k=k,
v=v,
normalize=True,
scale=1,
)
elif mode == 'parallel':
assert q.shape[-1] <= 128
o = parallel_rebased(
q=q,
k=k,
v=v,
eps=self.eps,
use_scale=True,
use_normalize=True,
)
o = self.o_proj(o)
o = self.dropout(o)
return o
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
def forward_reference(
self,
hidden_states: torch.Tensor,
filters: torch.Tensor = None,
*args,
**kwargs
):
"""
x (torch.Tensor): tensor of shape (b, d, t)
y (torch.Tensor): tensor of shape (b, d, t)
"""
b, t, _ = hidden_states.size()
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q = q.view(b, t, -1, self.feature_dim).transpose(1, 2)
k = k.view(b, t, -1, self.feature_dim).transpose(1, 2)
v = v.view(b, t, -1, self.head_dim).transpose(1, 2)
# Linear attention
q, k = self.feature_map(q), self.feature_map(k)
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
# Compute attention
if self.causal:
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
else:
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
y = rearrange(y, 'b h t d -> b t (h d)')
y = self.o_proj(y.to(hidden_states.dtype))
y = self.dropout(y)
return y.to(hidden_states.dtype)