|
15 | 15 | from tidy3d.components.mode.derivatives import create_sfactor_b, create_sfactor_f |
16 | 16 | from tidy3d.components.mode.solver import compute_modes |
17 | 17 | from tidy3d.components.mode_spec import MODE_DATA_KEYS |
| 18 | +from tidy3d.constants import fp_eps |
18 | 19 | from tidy3d.exceptions import DataError, SetupError |
19 | 20 | from tidy3d.plugins.mode import ModeSolver |
20 | 21 | from tidy3d.plugins.mode.mode_solver import MODE_MONITOR_NAME |
@@ -1503,3 +1504,328 @@ def test_sort_spec_track_freq(): |
1503 | 1504 | assert np.allclose(modes_lowest.Ex.abs, modes_lowest_retracked.Ex.abs) |
1504 | 1505 | assert np.all(modes_lowest.n_eff == modes_lowest_retracked.n_eff) |
1505 | 1506 | assert np.all(modes_lowest.n_group == modes_lowest_retracked.n_group) |
| 1507 | + |
| 1508 | + |
| 1509 | +def test_mode_solver_pec_boundary_truncation(): |
| 1510 | + """Test that fields are correctly zero outside simulation bounds and satisfy PEC boundary conditions. |
| 1511 | +
|
| 1512 | + This test creates a rectangular waveguide where the waveguide walls are modeled using the |
| 1513 | + PEC boundary conditions of the simulation domain. The mode solver grid may extend beyond |
| 1514 | + the simulation bounds due to _discretize_inds_monitor adding extra cells for interpolation. |
| 1515 | + This test verifies that: |
| 1516 | + 1. Fields outside the simulation boundaries are exactly 0 |
| 1517 | + 2. Electric fields tangential to the boundary are 0 at the boundary |
| 1518 | + 3. Magnetic fields normal to the boundary are 0 at the boundary |
| 1519 | + """ |
| 1520 | + # Create a simulation with PEC boundaries (default) |
| 1521 | + # The simulation size defines the waveguide cross-section |
| 1522 | + sim_size = (2.0, 0.0, 1.5) # Waveguide in y-direction, cross-section in x-z plane |
| 1523 | + freq0 = td.C_0 / 1.55 |
| 1524 | + |
| 1525 | + # Simple simulation with just air - the waveguide walls are the PEC boundaries |
| 1526 | + simulation = td.Simulation( |
| 1527 | + size=sim_size, |
| 1528 | + grid_spec=td.GridSpec.uniform(dl=0.05), |
| 1529 | + run_time=1e-14, |
| 1530 | + boundary_spec=td.BoundarySpec( |
| 1531 | + x=td.Boundary.pec(), |
| 1532 | + y=td.Boundary.periodic(), # Propagation direction |
| 1533 | + z=td.Boundary.pec(), |
| 1534 | + ), |
| 1535 | + sources=[ |
| 1536 | + td.PointDipole( |
| 1537 | + center=(0, 0, 0), |
| 1538 | + source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 10), |
| 1539 | + polarization="Ex", |
| 1540 | + ) |
| 1541 | + ], |
| 1542 | + ) |
| 1543 | + |
| 1544 | + # Mode plane perpendicular to propagation direction |
| 1545 | + plane = td.Box(center=(0, 0, 0), size=(sim_size[0], 0, sim_size[2])) |
| 1546 | + |
| 1547 | + mode_spec = td.ModeSpec( |
| 1548 | + num_modes=2, |
| 1549 | + precision="double", |
| 1550 | + ) |
| 1551 | + |
| 1552 | + ms = ModeSolver( |
| 1553 | + simulation=simulation, |
| 1554 | + plane=plane, |
| 1555 | + mode_spec=mode_spec, |
| 1556 | + freqs=[freq0], |
| 1557 | + direction="+", |
| 1558 | + colocate=False, |
| 1559 | + ) |
| 1560 | + |
| 1561 | + # Get the mode solver data |
| 1562 | + data = ms.data |
| 1563 | + |
| 1564 | + # Get simulation grid boundaries |
| 1565 | + sim_bounds = simulation.bounds |
| 1566 | + sim_x_min, sim_x_max = sim_bounds[0][0], sim_bounds[1][0] |
| 1567 | + sim_z_min, sim_z_max = sim_bounds[0][2], sim_bounds[1][2] |
| 1568 | + |
| 1569 | + # Get solver grid boundaries (may extend beyond simulation) |
| 1570 | + solver_grid = ms._solver_grid |
| 1571 | + solver_x = solver_grid.boundaries.x |
| 1572 | + solver_z = solver_grid.boundaries.z |
| 1573 | + |
| 1574 | + # Check if the solver grid extends beyond simulation bounds |
| 1575 | + grid_extends_x_min = solver_x[0] < sim_x_min - fp_eps |
| 1576 | + grid_extends_x_max = solver_x[-1] > sim_x_max + fp_eps |
| 1577 | + grid_extends_z_min = solver_z[0] < sim_z_min - fp_eps |
| 1578 | + grid_extends_z_max = solver_z[-1] > sim_z_max + fp_eps |
| 1579 | + |
| 1580 | + # Test 1: Fields outside simulation boundaries should be exactly 0 (zero-padded) |
| 1581 | + for field_name in ("Ex", "Ey", "Ez", "Hx", "Hy", "Hz"): |
| 1582 | + field = data.field_components[field_name] |
| 1583 | + field_coords_x = field.coords["x"].values |
| 1584 | + field_coords_z = field.coords["z"].values |
| 1585 | + |
| 1586 | + # Check fields at x positions outside simulation |
| 1587 | + if grid_extends_x_min: |
| 1588 | + x_outside_min = field_coords_x[field_coords_x < sim_x_min - fp_eps] |
| 1589 | + if len(x_outside_min) > 0: |
| 1590 | + field_outside = field.sel(x=x_outside_min) |
| 1591 | + assert np.all(field_outside.values == 0.0), ( |
| 1592 | + f"{field_name} should be exactly 0 outside x_min boundary, got {np.max(np.abs(field_outside.values))}" |
| 1593 | + ) |
| 1594 | + |
| 1595 | + if grid_extends_x_max: |
| 1596 | + x_outside_max = field_coords_x[field_coords_x > sim_x_max + fp_eps] |
| 1597 | + if len(x_outside_max) > 0: |
| 1598 | + field_outside = field.sel(x=x_outside_max) |
| 1599 | + assert np.all(field_outside.values == 0.0), ( |
| 1600 | + f"{field_name} should be exactly 0 outside x_max boundary, got {np.max(np.abs(field_outside.values))}" |
| 1601 | + ) |
| 1602 | + |
| 1603 | + # Check fields at z positions outside simulation |
| 1604 | + if grid_extends_z_min: |
| 1605 | + z_outside_min = field_coords_z[field_coords_z < sim_z_min - fp_eps] |
| 1606 | + if len(z_outside_min) > 0: |
| 1607 | + field_outside = field.sel(z=z_outside_min) |
| 1608 | + assert np.all(field_outside.values == 0.0), ( |
| 1609 | + f"{field_name} should be exactly 0 outside z_min boundary, got {np.max(np.abs(field_outside.values))}" |
| 1610 | + ) |
| 1611 | + |
| 1612 | + if grid_extends_z_max: |
| 1613 | + z_outside_max = field_coords_z[field_coords_z > sim_z_max + fp_eps] |
| 1614 | + if len(z_outside_max) > 0: |
| 1615 | + field_outside = field.sel(z=z_outside_max) |
| 1616 | + assert np.all(field_outside.values == 0.0), ( |
| 1617 | + f"{field_name} should be exactly 0 outside z_max boundary, got {np.max(np.abs(field_outside.values))}" |
| 1618 | + ) |
| 1619 | + |
| 1620 | + # Test 2: Tangential E-fields at PEC boundaries should be exactly 0 |
| 1621 | + # At x boundaries: Ey and Ez are tangential |
| 1622 | + # At z boundaries: Ex and Ey are tangential |
| 1623 | + |
| 1624 | + # Get field coordinates exactly at boundaries |
| 1625 | + for field_name in ("Ey", "Ez"): |
| 1626 | + field = data.field_components[field_name] |
| 1627 | + field_coords_x = field.coords["x"].values |
| 1628 | + # Find coordinates exactly at boundaries |
| 1629 | + x_at_min = field_coords_x[np.isclose(field_coords_x, sim_x_min, atol=fp_eps)] |
| 1630 | + x_at_max = field_coords_x[np.isclose(field_coords_x, sim_x_max, atol=fp_eps)] |
| 1631 | + |
| 1632 | + if len(x_at_min) > 0: |
| 1633 | + field_at_boundary = field.sel(x=x_at_min[0]) |
| 1634 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1635 | + f"{field_name} (tangential) should be exactly 0 at x_min PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1636 | + ) |
| 1637 | + |
| 1638 | + if len(x_at_max) > 0: |
| 1639 | + field_at_boundary = field.sel(x=x_at_max[0]) |
| 1640 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1641 | + f"{field_name} (tangential) should be exactly 0 at x_max PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1642 | + ) |
| 1643 | + |
| 1644 | + for field_name in ("Ex", "Ey"): |
| 1645 | + field = data.field_components[field_name] |
| 1646 | + field_coords_z = field.coords["z"].values |
| 1647 | + # Find coordinates exactly at boundaries |
| 1648 | + z_at_min = field_coords_z[np.isclose(field_coords_z, sim_z_min, atol=fp_eps)] |
| 1649 | + z_at_max = field_coords_z[np.isclose(field_coords_z, sim_z_max, atol=fp_eps)] |
| 1650 | + |
| 1651 | + if len(z_at_min) > 0: |
| 1652 | + field_at_boundary = field.sel(z=z_at_min[0]) |
| 1653 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1654 | + f"{field_name} (tangential) should be exactly 0 at z_min PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1655 | + ) |
| 1656 | + |
| 1657 | + if len(z_at_max) > 0: |
| 1658 | + field_at_boundary = field.sel(z=z_at_max[0]) |
| 1659 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1660 | + f"{field_name} (tangential) should be exactly 0 at z_max PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1661 | + ) |
| 1662 | + |
| 1663 | + # Test 3: Normal H-fields at PEC boundaries should be exactly 0 |
| 1664 | + # At x boundaries: Hx is normal |
| 1665 | + # At z boundaries: Hz is normal |
| 1666 | + field = data.field_components["Hx"] |
| 1667 | + field_coords_x = field.coords["x"].values |
| 1668 | + x_at_min = field_coords_x[np.isclose(field_coords_x, sim_x_min, atol=fp_eps)] |
| 1669 | + x_at_max = field_coords_x[np.isclose(field_coords_x, sim_x_max, atol=fp_eps)] |
| 1670 | + |
| 1671 | + if len(x_at_min) > 0: |
| 1672 | + field_at_boundary = field.sel(x=x_at_min[0]) |
| 1673 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1674 | + f"Hx (normal) should be exactly 0 at x_min PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1675 | + ) |
| 1676 | + |
| 1677 | + if len(x_at_max) > 0: |
| 1678 | + field_at_boundary = field.sel(x=x_at_max[0]) |
| 1679 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1680 | + f"Hx (normal) should be exactly 0 at x_max PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1681 | + ) |
| 1682 | + |
| 1683 | + field = data.field_components["Hz"] |
| 1684 | + field_coords_z = field.coords["z"].values |
| 1685 | + z_at_min = field_coords_z[np.isclose(field_coords_z, sim_z_min, atol=fp_eps)] |
| 1686 | + z_at_max = field_coords_z[np.isclose(field_coords_z, sim_z_max, atol=fp_eps)] |
| 1687 | + |
| 1688 | + if len(z_at_min) > 0: |
| 1689 | + field_at_boundary = field.sel(z=z_at_min[0]) |
| 1690 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1691 | + f"Hz (normal) should be exactly 0 at z_min PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1692 | + ) |
| 1693 | + |
| 1694 | + if len(z_at_max) > 0: |
| 1695 | + field_at_boundary = field.sel(z=z_at_max[0]) |
| 1696 | + assert np.all(field_at_boundary.values == 0.0), ( |
| 1697 | + f"Hz (normal) should be exactly 0 at z_max PEC boundary, got {np.max(np.abs(field_at_boundary.values))}" |
| 1698 | + ) |
| 1699 | + |
| 1700 | + |
| 1701 | +def test_mode_solver_boundary_warning_pmc(): |
| 1702 | + """Test that warnings are emitted when mode solver plane intersects unsupported PMC boundaries.""" |
| 1703 | + # Create a simulation with PMC boundaries on x |
| 1704 | + simulation = td.Simulation( |
| 1705 | + size=(4, 3, 3), |
| 1706 | + grid_spec=td.GridSpec.auto(wavelength=1.0), |
| 1707 | + structures=[WAVEGUIDE], |
| 1708 | + run_time=1e-12, |
| 1709 | + boundary_spec=td.BoundarySpec( |
| 1710 | + x=td.Boundary.pmc(), |
| 1711 | + y=td.Boundary.pec(), |
| 1712 | + z=td.Boundary.pec(), |
| 1713 | + ), |
| 1714 | + ) |
| 1715 | + |
| 1716 | + # Mode plane in xz plane that extends to simulation x boundaries |
| 1717 | + # The plane is larger than simulation, so it will intersect the PMC boundaries |
| 1718 | + plane = td.Box(center=(0, 0, 0), size=(6, 0, 6)) |
| 1719 | + |
| 1720 | + mode_spec = td.ModeSpec(num_modes=1) |
| 1721 | + ms = ModeSolver( |
| 1722 | + simulation=simulation, |
| 1723 | + plane=plane, |
| 1724 | + mode_spec=mode_spec, |
| 1725 | + freqs=[td.C_0 / 1.0], |
| 1726 | + ) |
| 1727 | + |
| 1728 | + # Access the cached property to trigger the warning |
| 1729 | + with AssertLogLevel("WARNING", contains_str="PMC") as ctx: |
| 1730 | + _ = ms._sim_boundary_positions |
| 1731 | + # Should warn for both x- and x+ sides |
| 1732 | + assert ctx.num_records == 2 |
| 1733 | + |
| 1734 | + |
| 1735 | +def test_mode_solver_boundary_warning_periodic(): |
| 1736 | + """Test that warnings are emitted when mode solver plane intersects unsupported periodic boundaries.""" |
| 1737 | + # Create a simulation with periodic boundaries on z |
| 1738 | + simulation = td.Simulation( |
| 1739 | + size=(4, 3, 3), |
| 1740 | + grid_spec=td.GridSpec.auto(wavelength=1.0), |
| 1741 | + structures=[WAVEGUIDE], |
| 1742 | + run_time=1e-12, |
| 1743 | + boundary_spec=td.BoundarySpec( |
| 1744 | + x=td.Boundary.pec(), |
| 1745 | + y=td.Boundary.pec(), |
| 1746 | + z=td.Boundary.periodic(), |
| 1747 | + ), |
| 1748 | + ) |
| 1749 | + |
| 1750 | + # Mode plane in xz plane that extends to simulation z boundaries |
| 1751 | + plane = td.Box(center=(0, 0, 0), size=(6, 0, 6)) |
| 1752 | + |
| 1753 | + mode_spec = td.ModeSpec(num_modes=1) |
| 1754 | + ms = ModeSolver( |
| 1755 | + simulation=simulation, |
| 1756 | + plane=plane, |
| 1757 | + mode_spec=mode_spec, |
| 1758 | + freqs=[td.C_0 / 1.0], |
| 1759 | + ) |
| 1760 | + |
| 1761 | + # Access the cached property to trigger the warning |
| 1762 | + with AssertLogLevel("WARNING", contains_str="periodic") as ctx: |
| 1763 | + _ = ms._sim_boundary_positions |
| 1764 | + # Should warn for both z- and z+ sides |
| 1765 | + assert ctx.num_records == 2 |
| 1766 | + |
| 1767 | + |
| 1768 | +def test_mode_solver_boundary_warning_bloch(): |
| 1769 | + """Test that warnings are emitted when mode solver plane intersects unsupported Bloch boundaries.""" |
| 1770 | + # Create a simulation with Bloch boundaries on x |
| 1771 | + simulation = td.Simulation( |
| 1772 | + size=(4, 3, 3), |
| 1773 | + grid_spec=td.GridSpec.auto(wavelength=1.0), |
| 1774 | + structures=[WAVEGUIDE], |
| 1775 | + run_time=1e-12, |
| 1776 | + boundary_spec=td.BoundarySpec( |
| 1777 | + x=td.Boundary.bloch(bloch_vec=0.1), |
| 1778 | + y=td.Boundary.pec(), |
| 1779 | + z=td.Boundary.pec(), |
| 1780 | + ), |
| 1781 | + ) |
| 1782 | + |
| 1783 | + # Mode plane in xz plane that extends to simulation x boundaries |
| 1784 | + plane = td.Box(center=(0, 0, 0), size=(6, 0, 6)) |
| 1785 | + |
| 1786 | + mode_spec = td.ModeSpec(num_modes=1) |
| 1787 | + ms = ModeSolver( |
| 1788 | + simulation=simulation, |
| 1789 | + plane=plane, |
| 1790 | + mode_spec=mode_spec, |
| 1791 | + freqs=[td.C_0 / 1.0], |
| 1792 | + ) |
| 1793 | + |
| 1794 | + # Access the cached property to trigger the warning |
| 1795 | + with AssertLogLevel("WARNING", contains_str="Bloch") as ctx: |
| 1796 | + _ = ms._sim_boundary_positions |
| 1797 | + # Should warn for both x- and x+ sides |
| 1798 | + assert ctx.num_records == 2 |
| 1799 | + |
| 1800 | + |
| 1801 | +def test_mode_solver_boundary_no_warning_when_not_intersecting(): |
| 1802 | + """Test that no warnings are emitted when mode solver plane doesn't intersect unsupported boundaries.""" |
| 1803 | + # Create a simulation with PMC boundaries on x |
| 1804 | + simulation = td.Simulation( |
| 1805 | + size=(4, 3, 3), |
| 1806 | + grid_spec=td.GridSpec.auto(wavelength=1.0), |
| 1807 | + structures=[WAVEGUIDE], |
| 1808 | + run_time=1e-12, |
| 1809 | + boundary_spec=td.BoundarySpec( |
| 1810 | + x=td.Boundary.pmc(), |
| 1811 | + y=td.Boundary.pec(), |
| 1812 | + z=td.Boundary.pec(), |
| 1813 | + ), |
| 1814 | + ) |
| 1815 | + |
| 1816 | + # Mode plane in xz plane that is smaller than simulation x bounds |
| 1817 | + # The plane doesn't extend to the PMC boundaries |
| 1818 | + plane = td.Box(center=(0, 0, 0), size=(2, 0, 2)) |
| 1819 | + |
| 1820 | + mode_spec = td.ModeSpec(num_modes=1) |
| 1821 | + ms = ModeSolver( |
| 1822 | + simulation=simulation, |
| 1823 | + plane=plane, |
| 1824 | + mode_spec=mode_spec, |
| 1825 | + freqs=[td.C_0 / 1.0], |
| 1826 | + ) |
| 1827 | + |
| 1828 | + # Access the cached property - should NOT trigger any warning |
| 1829 | + with AssertLogLevel(None) as ctx: |
| 1830 | + _ = ms._sim_boundary_positions |
| 1831 | + assert ctx.num_records == 0 |
0 commit comments