Skip to content

Latest commit

 

History

History
90 lines (62 loc) · 3.35 KB

README.md

File metadata and controls

90 lines (62 loc) · 3.35 KB

optimparallel - A parallel version of scipy.optimize.minimize(method='L-BFGS-B')

DOI PyPI Build Status License: GPL v3

Using optimparallel.minimize_parallel() can significantly reduce the optimization time. For an objective function with an execution time of more than 0.1 seconds and p parameters the optimization speed increases by up to factor 1+p when no analytic gradient is specified and 1+p processor cores with sufficient memory are available.

A similar extension of the L-BFGS-B optimizer exists in the R package optimParallel:

Installation

To install the package run:

$ pip install optimparallel

Usage

Replace scipy.optimize.minimize(method='L-BFGS-B') by optimparallel.minimize_parallel() to execute the minimization in parallel:

from optimparallel import minimize_parallel
from scipy.optimize import minimize
import numpy as np
import time

# objective function
def f(x, sleep_secs=0.5):
    print('fn')
    time.sleep(sleep_secs)
    return sum((x - 14)**2)

# start value
x0 = np.array([10, 20])

# minimize with parallel evaluation of 'fun' and
# its approximate gradient.
o1 = minimize_parallel(fun=f, x0=x0, args=0.5)
print(o1)

# test against scipy.optimize.minimize()
o2 = minimize(fun=f, x0=x0, args=0.5, method='L-BFGS-B')
print(all(np.isclose(o1.x, o2.x, atol=1e-10)),
      np.isclose(o1.fun, o2.fun, atol=1e-10),
      all(np.isclose(o1.jac, o2.jac, atol=1e-10)))

The evaluated x values, fun(x), and jac(x) can be returned:

o1 = minimize_parallel(fun=f, x0=x0, args=0.5, parallel={'loginfo': True})
print(o1.loginfo)

More examples are given in example.py and the Jupyter Notebook example_extended.ipynb.

Note for Windows users: It may be necessary to run minimize_parallel() in the main scope. See example_windows_os.py.

Citation

When using this package please cite:

Author

Contributor

Contributions

Contributions via pull requests are welcome.