-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathBinaryTreesWithFactors823.java
87 lines (80 loc) · 2.51 KB
/
BinaryTreesWithFactors823.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/**
* Given an array of unique integers, each integer is strictly greater than 1.
*
* We make a binary tree using these integers and each number may be used for
* any number of times.
*
* Each non-leaf node's value should be equal to the product of the values of
* it's children.
*
* How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
*
* Example 1:
* Input: A = [2, 4]
* Output: 3
* Explanation: We can make these trees: [2], [4], [4, 2, 2]
*
* Example 2:
* Input: A = [2, 4, 5, 10]
* Output: 7
* Explanation: We can make these trees:
* [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
*
* Note:
* 1 <= A.length <= 1000.
* 2 <= A[i] <= 10 ^ 9.
*/
public class BinaryTreesWithFactors823 {
private static long MOD = (long) Math.pow(10, 9) + 7;
public int numFactoredBinaryTrees(int[] A) {
Arrays.sort(A);
int N = A.length;
int max = A[N-1];
Map<Integer, Long> map = new HashMap<>();
long res = 0;
for (int i=0; i<N; i++) {
int curr = A[i];
long local = 1;
for (int j=0; j<i; j++) {
int left = A[j];
if (curr % left != 0) continue;
int right = curr / left;
if (left == right) {
local += map.get(left) * map.get(left);
continue;
}
int idx = Arrays.binarySearch(A, j, i, right);
if (idx < 0) continue;
local += map.get(left) * map.get(right) * 2;
}
res += local;
map.put(curr, local);
}
return (int) (res % MOD);
}
/**
* https://leetcode.com/problems/binary-trees-with-factors/solution/
*/
public int numFactoredBinaryTrees2(int[] A) {
int MOD = 1_000_000_007;
int N = A.length;
Arrays.sort(A);
long[] dp = new long[N];
Arrays.fill(dp, 1);
Map<Integer, Integer> index = new HashMap();
for (int i = 0; i < N; ++i)
index.put(A[i], i);
for (int i = 0; i < N; ++i)
for (int j = 0; j < i; ++j) {
if (A[i] % A[j] == 0) { // A[j] is left child
int right = A[i] / A[j];
if (index.containsKey(right)) {
dp[i] = (dp[i] + dp[j] * dp[index.get(right)]) % MOD;
}
}
}
long ans = 0;
for (long x: dp) ans += x;
return (int) (ans % MOD);
}
}