-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathEqualTreePartition663.java
72 lines (68 loc) · 1.45 KB
/
EqualTreePartition663.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/**
* Given a binary tree with n nodes, your task is to check if it's possible to
* partition the tree to two trees which have the equal sum of values after
* removing exactly one edge on the original tree.
*
* Example 1:
* Input:
* 5
* / \
* 10 10
* / \
* 2 3
*
* Output: True
*
* Explanation:
* 5
* /
* 10
* Sum: 15
*
* 10
* / \
* 2 3
* Sum: 15
*
* Example 2:
*
* Input:
* 1
* / \
* 2 10
* / \
* 2 20
*
* Output: False
*
* Explanation: You can't split the tree into two trees with equal sum after
* removing exactly one edge on the tree.
*
* Note:
* The range of tree node value is in the range of [-100000, 100000].
* 1 <= n <= 10000
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class EqualTreePartition663 {
public boolean checkEqualTree(TreeNode root) {
Set<Integer> set = new HashSet<>();
int total = sum(root, set, true);
return total % 2 == 0 && set.contains(total / 2);
}
private int sum(TreeNode root, Set<Integer> set, boolean isRoot) {
if (root == null) return 0;
int left = sum(root.left, set, false);
int right = sum(root.right, set, false);
int s = left + root.val + right;
if (!isRoot) set.add(s);
return s;
}
}