-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathLongestContinuousIncreasingSubsequence674.java
59 lines (55 loc) · 1.5 KB
/
LongestContinuousIncreasingSubsequence674.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/**
* Given an unsorted array of integers, find the length of longest continuous
* increasing subsequence (subarray).
*
* Example 1:
* Input: [1,3,5,4,7]
* Output: 3
* Explanation: The longest continuous increasing subsequence is [1,3,5], its
* length is 3.
* Even though [1,3,5,7] is also an increasing subsequence, it's not a
* continuous one where 5 and 7 are separated by 4.
*
* Example 2:
* Input: [2,2,2,2,2]
* Output: 1
* Explanation: The longest continuous increasing subsequence is [2], its
* length is 1.
*
* Note: Length of the array will not exceed 10,000.
*/
public class LongestContinuousIncreasingSubsequence674 {
public int findLengthOfLCIS(int[] nums) {
int len = 0;
int res = 0;
if (nums == null || nums.length == 0) return res;
int pre = nums[0]-1;
for (int n: nums) {
if (n > pre) {
len++;
} else {
res = Math.max(res, len);
len = 1;
}
pre = n;
}
return Math.max(res, len);
}
public int findLengthOfLCIS2(int[] nums) {
int count = 0;
int res = 0;
for (int i=0; i<nums.length; i++) {
if (i == 0) {
count++;
} else {
if (nums[i] > nums[i-1]) {
count++;
} else {
count = 1;
}
}
res = Math.max(res, count);
}
return res;
}
}