-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathNumberOfCornerRectangles750.java
121 lines (109 loc) · 3.57 KB
/
NumberOfCornerRectangles750.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/**
* Given a grid where each entry is only 0 or 1, find the number of corner
* rectangles.
*
* A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned
* rectangle. Note that only the corners need to have the value 1. Also, all
* four 1s used must be distinct.
*
* Example 1:
* Input: grid =
* [[1, 0, 0, 1, 0],
* [0, 0, 1, 0, 1],
* [0, 0, 0, 1, 0],
* [1, 0, 1, 0, 1]]
* Output: 1
* Explanation: There is only one corner rectangle, with corners
* grid[1][2], grid[1][4], grid[3][2], grid[3][4].
*
* Example 2:
* Input: grid =
* [[1, 1, 1],
* [1, 1, 1],
* [1, 1, 1]]
* Output: 9
* Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles,
* and one 3x3 rectangle.
*
* Example 3:
* Input: grid =
* [[1, 1, 1, 1]]
* Output: 0
* Explanation: Rectangles must have four distinct corners.
*
* Note:
* The number of rows and columns of grid will each be in the range [1, 200].
* Each grid[i][j] will be either 0 or 1.
* The number of 1s in the grid will be at most 6000.
*/
public class NumberOfCornerRectangles750 {
public int countCornerRectangles(int[][] grid) {
int M = grid.length;
int N = grid[0].length;
int res = 0;
for (int i=0; i<M-1; i++) {
for (int j=0; j<N-1; j++) {
if (grid[i][j] == 0) continue;
for (int p=i+1; p<M; p++) {
if (grid[p][j] == 0) continue;
for (int q=j+1; q<N; q++) {
if (grid[i][q] == 0) continue;
if (grid[p][q] == 1) res++;
}
}
}
}
return res;
}
/**
* https://leetcode.com/problems/number-of-corner-rectangles/solution/
*/
public int countCornerRectangles2(int[][] grid) {
Map<Integer, Integer> count = new HashMap();
int ans = 0;
for (int[] row: grid) {
for (int c1 = 0; c1 < row.length; ++c1) if (row[c1] == 1) {
for (int c2 = c1+1; c2 < row.length; ++c2) if (row[c2] == 1) {
int pos = c1 * 200 + c2;
int c = count.getOrDefault(pos, 0);
ans += c;
count.put(pos, c+1);
}
}
}
return ans;
}
/**
* https://leetcode.com/problems/number-of-corner-rectangles/discuss/110196/short-JAVA-AC-solution-(O(m2-*-n))-with-explanation.
*/
public int countCornerRectangles3(int[][] grid) {
int ans = 0;
for (int i = 0; i < grid.length - 1; i++) {
for (int j = i + 1; j < grid.length; j++) {
int counter = 0;
for (int k = 0; k < grid[0].length; k++) {
if (grid[i][k] == 1 && grid[j][k] == 1) counter++;
}
if (counter > 0) ans += counter * (counter - 1) / 2;
}
}
return ans;
}
/**
* https://leetcode.com/problems/number-of-corner-rectangles/discuss/110200/Summary-of-three-solutions-based-on-three-different-ideas
*/
public int countCornerRectangles4(int[][] grid) {
int m = grid.length, n = grid[0].length, res = 0;
int[][] dp = new int[n][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0) continue;
for (int q = j + 1; q < n; q++) {
if (grid[i][q] == 0) continue;
res += dp[j][q]++;
}
}
}
return res;
}
}