forked from microsoft/presidio-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crf_evaluator.py
97 lines (80 loc) · 3.09 KB
/
crf_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pickle
from typing import List
from presidio_evaluator import ModelEvaluator, InputSample
class CRFEvaluator(ModelEvaluator):
def __init__(self,
model_pickle_path: str = "../models/crf.pickle",
entities_to_keep: List[str] = None,
verbose: bool = False,
labeling_scheme: str = "BIO",
compare_by_io: bool = True):
super().__init__(entities_to_keep=entities_to_keep,
verbose=verbose,
labeling_scheme=labeling_scheme,
compare_by_io=compare_by_io)
if model_pickle_path is None:
raise ValueError("model_pickle_path must be supplied")
with open(model_pickle_path, 'rb') as f:
self.model = pickle.load(f)
def predict(self, sample: InputSample) -> List[str]:
tags = CRFEvaluator.crf_predict(sample,self.model)
if len(tags) != len(sample.tokens):
print("mismatch between previous tokens and new tokens")
# translated_tags = sample.rename_from_spacy_tags(tags)
return tags
@staticmethod
def crf_predict(sample, model):
sample.translate_input_sample_tags()
conll = sample.to_conll(translate_tags=True)
sentence = [(di['text'], di['pos'], di['label']) for di in conll]
features = CRFEvaluator.sent2features(sentence)
return model.predict([features])[0]
@staticmethod
def word2features(sent, i):
word = sent[i][0]
postag = sent[i][1]
features = {
'bias': 1.0,
'word.lower()': word.lower(),
'word[-3:]': word[-3:],
'word[-2:]': word[-2:],
'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),
'word.isdigit()': word.isdigit(),
'postag': postag,
'postag[:2]': postag[:2],
}
if i > 0:
word1 = sent[i - 1][0]
postag1 = sent[i - 1][1]
features.update({
'-1:word.lower()': word1.lower(),
'-1:word.istitle()': word1.istitle(),
'-1:word.isupper()': word1.isupper(),
'-1:postag': postag1,
'-1:postag[:2]': postag1[:2],
})
else:
features['BOS'] = True
if i < len(sent) - 1:
word1 = sent[i + 1][0]
postag1 = sent[i + 1][1]
features.update({
'+1:word.lower()': word1.lower(),
'+1:word.istitle()': word1.istitle(),
'+1:word.isupper()': word1.isupper(),
'+1:postag': postag1,
'+1:postag[:2]': postag1[:2],
})
else:
features['EOS'] = True
return features
@staticmethod
def sent2features(sent):
return [CRFEvaluator.word2features(sent, i) for i in range(len(sent))]
@staticmethod
def sent2labels(sent):
return [label for token, postag, label in sent]
@staticmethod
def sent2tokens(sent):
return [token for token, postag, label in sent]