-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
327 lines (268 loc) · 12.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from keras.utils import Sequence, to_categorical
from keras.preprocessing import image
from keras import backend as K
import glob
import os
import numpy as np
import pickle as pkl
import random as rn
# Getting reproducible results:
# https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(42)
rn.seed(12345)
'''
Adapted from: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly.html
'''
class DataGenerator(Sequence):
'Generates data for Keras'
def __init__(self, batch_size=16, shuffle=False, fn_preprocess=None,
index_start=0, max_per_class=None, seq_length=None,
sample_step=1, seq_overlap=0, target_size=None,
classes=None, data_format=K.image_data_format(),
output_mode=None, rescale=None, max_seq_per_source=None,
min_seq_length=1, pad_sequences=False, return_sources=False):
'Initialization'
self.batch_size = batch_size
self.X = []
self.y = []
self.shuffle = shuffle
self.index_start = index_start
self.max_per_class = max_per_class
self.seq_length = seq_length
self.min_seq_length = min_seq_length
self.sample_step = sample_step
self.target_size = target_size
self.fn_preprocess = fn_preprocess
self.return_sources = return_sources
self.classes = classes
self.data_format = data_format
self.output_mode = output_mode
self.seq_overlap = seq_overlap
self.rescale = rescale
self.max_seq_per_source = max_seq_per_source
self.source_count = {}
self.pad_sequences = pad_sequences
def flow_from_directory(self, data_dir):
self.data_dir = data_dir
if self.classes is None:
self.classes = sorted(next(os.walk(data_dir))[1])
data_pattern = '{}/*'
total_samples = 0
for i, c in enumerate(self.classes):
class_samples = sorted(glob.glob(os.path.join(data_dir, data_pattern.format(c))))
total_samples += self.__process_class_samples(i, class_samples, class_samples)
msg = 'Found {} samples belonging to {} classes in {}'
print(msg.format(total_samples, len(self.classes), self.data_dir))
self.__postprocess()
return self
def flow(self, X, y, sources=None):
if self.classes is None:
self.classes = sorted(list(set(y)))
self.sources = sources
total_samples = 0
for i, c in enumerate(self.classes):
sample_indices = [k for k, y_ in enumerate(y) if y_ == c]
class_samples = X[sample_indices]
class_sources = None
if sources:
class_sources = sources[sample_indices]
total_samples += self.__process_class_samples(i, class_samples, class_sources)
msg = 'Found {} samples belonging to {} classes'
print(msg.format(total_samples, len(self.classes)))
self.__postprocess()
return self
def __process_class_samples(self, class_index, class_samples, class_sources=None):
if 0 < self.index_start < 1:
index_start = int(self.index_start * len(class_samples))
else:
index_start = self.index_start
if self.max_per_class is None or (index_start < 0 <= index_start + self.max_per_class):
class_samples = class_samples[index_start::self.sample_step]
class_sources = class_sources[index_start::self.sample_step]
else:
if 0 < self.max_per_class < 1:
index_end = index_start + int(self.max_per_class * len(class_samples))
else:
index_end = index_start + self.max_per_class
class_samples = class_samples[index_start:index_end:self.sample_step]
class_sources = class_sources[index_start:index_end:self.sample_step]
total_class_samples = len(class_samples)
if self.seq_length:
class_samples = self.__to_sequence(class_samples, class_sources)
self.y.extend([class_index] * len(class_samples))
self.X.extend(class_samples)
return total_class_samples
def __postprocess(self):
self.n_classes = len(self.classes)
if len(self.X) == 0:
print('No data found in {}!'.format(self.data_dir))
else:
self.sources = []
if self.seq_length:
# Check sequence counts consistency
for k, c in self.source_count.items():
if self.max_seq_per_source and c > self.max_seq_per_source:
raise ValueError('A sequence exceeds the maximum length')
# Get sequence length distribution
seq_length_dist = {}
for seq in self.X:
count_per_length = seq_length_dist.get(len(seq), 0)
seq_length_dist[len(seq)] = count_per_length + 1
# get sources (e.g. videos)
for sample in seq:
source = '__'.join(sample.split('__')[:-1])
if len(source) > 0 and source != 'padding':
self.sources.append(source)
msg = 'Found {} sequences belonging to {} classes'
print(msg.format(len(self.X), self.n_classes))
print('Sequence distribution:')
total = 0
for length, count in sorted(seq_length_dist.items()):
print('- {} sequences of length {}'.format(count, length))
total += count * length
all_samples = [s for seq in self.X for s in seq if s != 'padding']
unique_samples = len(set(all_samples))
print('Total samples used: {}'.format(unique_samples))
else:
for x in self.X:
source = '__'.join(x.split('__')[:-1])
if len(source) > 0 and source != 'padding':
self.sources.append(source)
self.sources = sorted(list(set(self.sources)))
print('Total sources used: {}'.format(len(self.sources)))
self.data_shape = self.__load_data(0).shape
print('Data shape: {}'.format(self.data_shape))
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.X) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Generate data
return self.__data_generation(indexes)
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.X))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, indexes):
'Generates data containing batch_size samples' # X : (n_samples, *shape)
# Initialization
X = np.empty((self.batch_size,) + self.data_shape)
y = np.empty((self.batch_size), dtype=int)
sources = []
# Generate data
for i, index in enumerate(indexes):
X[i,] = self.__load_data(index)
# Store class
y[i] = self.y[index]
sources.append(self.X[index])
if self.data_format == 'channels_first':
X = np.transpose(X, (0, 1, 4, 2, 3))
if self.output_mode is not None and self.output_mode == 'error':
data = (X, np.zeros(self.batch_size, np.float32))
elif self.output_mode is not None and self.output_mode == 'category_and_error':
data = (X, {
'category_prediction': to_categorical(y, num_classes=self.n_classes),
'prednet_error': np.zeros(self.batch_size, np.float32)
})
else:
data = (X, to_categorical(y, num_classes=self.n_classes))
if self.return_sources:
data += (np.array(sources),)
return data
def __preprocess(self, img):
'''if self.target_size:
img = utils.resize_img(img, self.target_size)'''
if self.rescale:
img = self.rescale * img
if self.fn_preprocess:
img = self.fn_preprocess(img)
return img
def __load_image(self, filename):
img = image.load_img(filename, target_size=self.target_size)
img = image.img_to_array(img)
# img = imread(filename)
return self.__preprocess(img)
def __load_pickle(self, filename):
with open(filename, 'rb') as f:
return pkl.load(f)
def __load_sample(self, filename):
if filename.lower().endswith('.pkl'):
sample = self.__load_pickle(filename)
elif filename.lower().endswith(('.png', '.jpg', '.jpeg')):
sample = self.__load_image(filename)
elif filename == 'padding':
sample = np.zeros(self.sample_shape)
else:
raise ValueError('{} format is not supported'.format(filename))
self.sample_shape = sample.shape
return sample
def __load_seq_data(self, index):
seq = self.X[index]
seq_data = []
for sample in seq:
seq_data.append(self.__load_sample(sample))
return np.array(seq_data)
def __load_data(self, index):
if len(self.X) <= index:
return None
if self.seq_length:
data = self.__load_seq_data(index)
else:
data = self.__load_sample(self.X[index])
return data
def __add_incomplete_sequence(self, seq, source_seq, seqs, source_seqs):
if self.pad_sequences:
padding_item = 'padding' # np.zeros_like(seq[-1])
seq.extend([padding_item] * (self.seq_length - len(seq)))
source_seq.extend([padding_item] * (self.seq_length - len(seq)))
seqs.append(seq)
source_seqs.append(source_seq)
def __to_sequence(self, samples, sources):
seqs = []
source_seqs = []
i = 0
while i < len(sources) - self.seq_overlap - 1:
seq = []
source_seq = []
prev_source = None
# Try to get one sequence of length self.seq_length
for j in range(i, i + self.seq_length):
# NAME_OF__SOURCE__frame_001.pkl => NAME_OF__SOURCE
source = '__'.join(sources[j].split('__')[:-1])
# print(i, j, source)
count = self.source_count.get(source, 0)
if self.max_seq_per_source and count >= self.max_seq_per_source:
# print('count:', count, samples[j])
i = j + 1
break
if prev_source is None or prev_source == source:
seq.append(samples[j])
source_seq.append(source)
# print('prev_source == source:', i, j)
if len(seq) == self.seq_length:
# print('added:', i, j, source)
seqs.append(seq)
source_seqs.append(source_seq)
i = j - self.seq_overlap + 1
self.source_count[source] = count + 1
break
else:
if self.min_seq_length <= len(seq):
self.__add_incomplete_sequence(seq, source_seq,
seqs, source_seqs)
i = j
break
prev_source = source
# print(len(sources), self.seq_overlap)
if j == len(sources) - 1:
if self.min_seq_length <= len(seq):
self.__add_incomplete_sequence(seq, source_seq,
seqs, source_seqs)
i = j
break
return seqs