-
Notifications
You must be signed in to change notification settings - Fork 6
/
hw8.jl
1035 lines (809 loc) · 33 KB
/
hw8.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.12.7
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ c3e52bf2-ca9a-11ea-13aa-03a4335f2906
begin
import Pkg
Pkg.activate(mktempdir())
Pkg.add([
Pkg.PackageSpec(name="Plots", version="1.6-1"),
Pkg.PackageSpec(name="PlutoUI", version="0.6.8-0.6"),
Pkg.PackageSpec(name="ImageMagick"),
Pkg.PackageSpec(name="Images", version="0.23"),
])
using Plots
using PlutoUI
using LinearAlgebra
using Images
end
# ╔═╡ 1df32310-19c4-11eb-0824-6766cd21aaf4
md"_homework 8, version 1_"
# ╔═╡ 1e109620-19c4-11eb-013e-1bc95c14c2ba
md"""
# **Bonus homework 8**: _Raytracing in 3D_
`18.S191`, fall 2020
This week we will recreate the 3D raytracer from the lectures, building on what we wrote for the 2D case. Compared to the past weeks, you will notice that this homework is a little different! We have included fewer intermediate checks, it is up to you to decide how you:
- split up the problem is smaller functions
- check and visualize your progress
To guide you through the homework, you can follow along with this week's live coding session. Feel free to stay close to James's code, or to come up with your own solution.
With the raytracer done, we will be able to recreate an artwork by M.C. Escher, scroll down to have a sneak peek!
---
_For MIT students:_ this homework is **optional**.
Feel free to ask questions!
"""
# ╔═╡ 1e202680-19c4-11eb-29a7-99061b886b3c
# edit the code below to set your name and kerberos ID (i.e. email without @mit.edu)
student = (name = "Jazzy Doe", kerberos_id = "jazz")
# you might need to wait until all other cells in this notebook have completed running.
# scroll around the page to see what's up
# ╔═╡ 1df82c20-19c4-11eb-0959-8543a0d5630d
md"""
Submission by: **_$(student.name)_** ($(student.kerberos_id)@mit.edu)
"""
# ╔═╡ e4d2f6f6-2089-11eb-0b4a-0d22f72f72ba
html"""
<h4>Lecture</h4>
<iframe width="100%" height="360" src="https://www.youtube.com/embed/JwyQezsQkkw" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<h4>Live coding session</h4>
<iframe width="100%" height="360" src="https://www.youtube.com/embed/TGrqQEtudks" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
"""
# ╔═╡ 1e2cd0b0-19c4-11eb-3583-0b82092139aa
md"_Let's create a package environment:_"
# ╔═╡ 4e917968-1f87-11eb-371f-e3899b76dc24
md"""
## From the last homework
Below we have included some important functions from the last homework (_Raytracing in 2D_), which we will be able to re-use for the 3D case.
There are some small changes:
1. The concept of a `Photon` now carries **color information**.
2. The `Sphere` is no longer a pure lens, it contains a `Surface` property which describes the mixture between transmission, reflection and a pure color. More on this later!
3. The `refract` function is updated to handle two edge cases, but its behaviour is generally unchanged.
Outside of these changes, all functions from the previous homework can be taken "as-is" when converting to 3D, cool!
"""
# ╔═╡ 24b0d4ba-192c-11eb-0f66-e77b544b0510
struct Photon
"Position vector"
p::Vector{Float64}
"Direction vector"
l::Vector{Float64}
"Color associated with the photon"
c::RGB
ior::Real
end
# ╔═╡ c6e8d30e-205c-11eb-271c-6165a164073d
md"""
#### Intersections:
"""
# ╔═╡ d851a202-1ca0-11eb-3da0-51fcb656783c
abstract type Object end
# ╔═╡ 8acef4b0-1a09-11eb-068d-79a259244ed1
struct Miss end
# ╔═╡ 8018fbf0-1a05-11eb-3032-95aae07ca78f
struct Intersection{T<:Object}
object::T
distance::Float64
point::Vector{Float64}
end
# ╔═╡ fcde90ca-2048-11eb-3e96-f9f47b6154e8
begin
Base.isless(a::Miss, b::Miss) = false
Base.isless(a::Miss, b::Intersection) = false
Base.isless(a::Intersection, b::Miss) = true
Base.isless(a::Intersection, b::Intersection) = a.distance < b.distance
end
# ╔═╡ dc36ceaa-205c-11eb-169c-bb4c36aaec9f
md"""
#### Reflect and refract:
"""
# ╔═╡ 43306bd4-194d-11eb-2e30-07eabb8b29ef
reflect(ℓ₁::Vector, n̂::Vector)::Vector = normalize(ℓ₁ - 2 * dot(ℓ₁, n̂) * n̂)
# ╔═╡ 14dc73d2-1a0d-11eb-1a3c-0f793e74da9b
function refract(
ℓ₁::Vector, n̂::Vector,
old_ior, new_ior
)
r = old_ior / new_ior
n̂_oriented = if -dot(ℓ₁, n̂) < 0
-n̂
else
n̂
end
c = -dot(ℓ₁, n̂_oriented)
if abs(c) > 0.999
ℓ₁
else
f = 1 - r^2 * (1 - c^2)
if f < 0
ℓ₁
else
normalize(r * ℓ₁ + (r*c - sqrt(f)) * n̂_oriented)
end
end
end
# ╔═╡ 7f0bf286-2071-11eb-0cac-6d10c93bab6c
md"""
#### Surface (new)
"""
# ╔═╡ 8a4e888c-1ef7-11eb-2a52-17db130458a5
struct Surface
# Reflectivity
r::Float64
# Transmission
t::Float64
# Color
c::RGBA
# index of refraction
ior::Float64
end
# ╔═╡ 9c3bdb62-1ef7-11eb-2204-417510bf0d72
html"""
<h4 id="sphere-defs">Sphere</h4>
<p>Aasdf</p>
"""
# ╔═╡ cb7ed97e-1ef7-11eb-192c-abfd66238378
struct Sphere <: Object
# Lens position
p::Vector{Float64}
# Lens radius
r::Float64
s::Surface
end
# ╔═╡ 6fdf613c-193f-11eb-0029-957541d2ed4d
function sphere_normal_at(p::Vector{Float64}, s::Sphere)
normalize(p - s.p)
end
# ╔═╡ 452d6668-1ec7-11eb-3b0a-0b8f45b43fd5
md"""
## Camera and Skyboxes
Now we can begin looking into the 3D nature of raytracing to create visualizations similar to those in lecture.
The first step is setting up the camera and another stuct known as a *sky box* to collect all the rays of light.
Luckily, the transition from 2D to 3D for raytracing is relatively straightforward and we can use all of the functions and concepts we have built in 2D moving forward.
Firstly, the camera:
"""
# ╔═╡ 791f0bd2-1ed1-11eb-0925-13c394b901ce
md"""
### Camera
For the purposes of this homework, we will constrain ourselves to a camera pointing exclusively downward.
This is simply because camera positioning can be a bit tricky and there is no reason to make the homework more complicated than it needs to be!
So, what is the purpose of the camera?
Well, in reality, a camera is a device that collects the color information from all the rays of light that are refracting and reflecting off of various objects in some sort of scene.
Because there are a nearly infinite number of rays bouncing around the scene at any time, we will actually constrain ourselves only to rays that are entering our camera.
In poarticular, we will create a 2D screen just in front of the camera and send a ray from the camera to each pixel in the screen, as shown in the following image:
$(RemoteResource("https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Ray_trace_diagram.svg/1920px-Ray_trace_diagram.svg.png", :width=>400, :style=>"display: block; margin: auto;"))
"""
# ╔═╡ 1a446de6-1ec9-11eb-1e2f-6f4376005d24
md"""
Because we are not considering camera motion for this exercise, we will assume that the image plane is constrained to the horizontal plane, but that the camera, itself, can be some distance behind it.
This distance from the image plane to the camera is called the *focal length* and is used to determine the field of view.
From here, it's clear we need to construct:
1. A camera struct
2. A function to initialize all the rays being generated by the camera
Let's start with the struct
"""
# ╔═╡ 88576c6e-1ecb-11eb-3e34-830aeb433df1
struct Camera <: Object
"Set of all pixels, counts as scene resolution"
resolution::Tuple{Int64,Int64}
"Physical size of aperture"
aperture_width::Float64
"Camera's distance from screen"
focal_length::Float64
"Camera's position"
p::Vector{Float64}
end
# ╔═╡ e774d6a8-2058-11eb-015a-83b4b6104e6e
test_cam = Camera((400,300), 9, -10, [0,00,100])
# ╔═╡ 8f73824e-1ecb-11eb-0b28-4d1bc0eefbc3
md"""
Now we need to construct some method to create each individual ray extending from the camera to a pixel in the image plane.
"""
# ╔═╡ 4006566e-1ecd-11eb-2ce1-9d1107186784
function init_rays(cam::Camera)
# Physical size of the aperture/image/grid
aspect_ratio = cam.resolution[1] / cam.resolution[2]
dim = (
cam.aperture_width,
cam.aperture_width / aspect_ratio
)
# The x, y coordinates of every pixel in our image grid
# relative to the image center
xs = LinRange(-0.5* dim[1], 0.5 * dim[1], cam.resolution[1])
ys = LinRange(0.5* dim[2], -0.5 * dim[2], cam.resolution[2])
pixel_positions = [[x, y, cam.focal_length] for y in ys, x in xs]
directions = normalize.(pixel_positions)
Photon.([cam.p], directions, [zero(RGB)], [1.0])
end
# ╔═╡ 156c0d7a-2071-11eb-1551-4f2d393df6c8
tiny_resolution_camera = Camera((4,3), 16, -5, [0, 20, 100])
# ╔═╡ 2838c1e4-2071-11eb-13d8-1da955fbf544
test_rays = init_rays(tiny_resolution_camera)
# ╔═╡ 595acf48-1ef6-11eb-0b46-934d17186e7b
extract_colors(rays) = map(ray -> ray.c, rays)
# ╔═╡ b7fa4512-2089-11eb-255d-4d6de9cdfb8e
extract_colors(test_rays)
# ╔═╡ 494687f6-1ecd-11eb-3ada-6f11f45aa74f
md"""
Nothing yet... time to add some objects!
### Skybox
Now that we have the concept of a camera, we can technically do a fully 3D raytracing example; however, we want to ensure that each pixel will actually *hit* something -- preferrably something with some color gradient so we can make sure our simulation is working!
For this, we will introduce the concept of a sky box, which is standard for most gaming applications.
Here, the idea is that our entire scene is held within some additional object, just like the mirrors we used in the 2D example.
The only difference here is that we will be using some texture instead of a reflective surface.
In addition, even though we are calling it a box, we'll actually be treating it as a sphere.
Because we have already worked out how to make sure we have hit the interior of a spherical lens, we will be using a similar function here.
For this part of the exercise, we will need to construct 2 things:
1. A skybox struct
2. A function that returns some color gradient to be called whenever a ray of light interacts with a sky box
So let's start with the sky box struct
"""
# ╔═╡ 9e71183c-1ef4-11eb-1802-3fc60b51ceba
struct SkyBox <: Object
# Skybox position
p::Vector{Float64}
# Skybox radius
r::Float64
# Color function
c::Function
end
# ╔═╡ 093b9e4a-1f8a-11eb-1d32-ad1d85ddaf42
function intersection(photon::Photon, sphere::S; ϵ=1e-3) where {S <: Union{SkyBox, Sphere}}
a = dot(photon.l, photon.l)
b = 2 * dot(photon.l, photon.p - sphere.p)
c = dot(photon.p - sphere.p, photon.p - sphere.p) - sphere.r^2
d = b^2 - 4*a*c
if d <= 0
Miss()
else
t1 = (-b-sqrt(d))/2a
t2 = (-b+sqrt(d))/2a
t = if t1 > ϵ
t1
elseif t2 > ϵ
t2
else
return Miss()
end
point = photon.p + t * photon.l
Intersection(sphere, t, point)
end
end
# ╔═╡ 89e98868-1fb2-11eb-078d-c9298d8a9970
function closest_hit(photon::Photon, objects::Vector{<:Object})
hits = intersection.([photon], objects)
minimum(hits)
end
# ╔═╡ aa9e61aa-1ef4-11eb-0b56-cd7ded52b640
md"""
Now we have the ability to create a skybox, the only thing left is to create some sort of texture function so that when the ray of light hits the sky box, we can return some form of color information.
So for this, we will basically create a function that returns back a smooth gradient in different directions depending on the position of the ray when it hits the skybox.
For the color information, we will be assigning a color to each cardinal axis.
That is to say that there will be a red gradient along $x$, a blue gradient along $y$, and a green gradient along $z$.
For this, we will need to define some extent over which the gradient will be active in 'real' units.
From there, we can say that the gradient is
$$\frac{r+D}{2D},$$
where $r$ is the ray's position when it hits the skybox, and $D$ is the extent over which the gradient is active.
So let's get to it and write the function!
"""
# ╔═╡ c947f546-1ef5-11eb-0f02-054f4e7ae871
function gradient_skybox_color(position, skybox)
extents = skybox.r
c = zero(RGB)
if position[1] < extents && position[1] > -extents
c += RGB((position[1]+extents)/(2.0*extents), 0, 0)
end
if position[2] < extents && position[2] > -extents
c += RGB(0,0,(position[2]+extents)/(2.0*extents))
end
if position[3] < extents && position[3] > -extents
c += RGB(0,(position[3]+extents)/(2.0*extents), 0)
end
return c
end
# ╔═╡ a919c880-206e-11eb-2796-55ccd9dbe619
sky = SkyBox([0.0, 0.0, 0.0], 1000, gradient_skybox_color)
# ╔═╡ 49651bc6-2071-11eb-1aa0-ff829f7b4350
md"""
Let's set up a basic scene and trace an image! Since our skybox is _spherical_ we can use **the same `intersect`** method as we use for `Sphere`s. Have a look at [the `intersect` method](#sphere-defs), we already added `SkyBox` as a possible type.
"""
# ╔═╡ daf80644-2070-11eb-3363-c577ae5846b3
basic_camera = Camera((300,200), 16, -5, [0,20,100])
# ╔═╡ df3f2178-1ef5-11eb-3098-b1c8c67cf136
md"""
To create this image, we used the ray tracing function bewlow, which takes in a camera and a set of objects / scene, and...
1. Initilializes all the rays
2. Propagates the rays forward
3. Converts everything into an image
"""
# ╔═╡ 04a86366-208b-11eb-1977-ff7e4ae6b714
md"""
## Writing a ray tracer
It's your turn! Below is the code needed to trace just the sky box, but we still need to add the ability to trace spheres.
**We recommend** that you start by just implementing _reflection_ - make every sphere reflect, regardless of its surface. Make sure that this is working well - can you see the reflection of one sphere in another sphere? Does our program get stuck in a loop?
Once you have reflections working, you can add _refraction_ and _colored spheres_. In the 2D example, we dealt specifically with spheres that could either 100% reflect or refract. In reality, it is possible for objects to either reflect or refract, something in-between.
That is to say, a ray of light can *split* when hitting an object surface, creating at least 2 more rays of light that will both return separate color values.
The color that we _perceive_ for that ray is the combination both of these colors - they are mixed.
A third possibility explored in the lecture is that the objects can also have a color associated with them and just return the color value instead of reflecting or refracting.
**You can choose!** After implementing reflection, you can implement three different spheres (you can modify the existing code, create new types, add functions, and so on), a purely reflective, purely refractive or opaquely colored sphere. You can also go straight for the more photorealistic option, which is that every sphere is a combination of these three - this is what we did in the lecture.
"""
# ╔═╡ a9754410-204d-11eb-123e-e5c5f87ae1c5
function interact(ray::Photon, hit::Intersection{SkyBox}, ::Any, ::Any)
ray_color = hit.object.c(hit.point, hit.object)
Photon(hit.point, ray.l, ray_color, ray.ior)
end
# ╔═╡ 086e1956-204e-11eb-2524-f719504fb95b
interact(photon::Photon, ::Miss, ::Any, ::Any) = photon
# ╔═╡ 95ca879a-204d-11eb-3473-959811aa8320
function step_ray(ray::Photon, objects::Vector{O},
num_intersections) where {O <: Object}
if num_intersections == 0
ray
else
hit = closest_hit(ray, objects)
interact(ray, hit, num_intersections, objects)
end
end
# ╔═╡ 6b91a58a-1ef6-11eb-1c36-2f44713905e1
function ray_trace(objects::Vector{O}, cam::Camera;
num_intersections = 10) where {O <: Object}
rays = init_rays(cam)
new_rays = step_ray.(rays, [objects], [num_intersections])
extract_colors(new_rays)
end
# ╔═╡ a0b84f62-2047-11eb-348c-db83f4e6c39c
let
scene = [sky]
ray_trace(scene, basic_camera; num_intersections=4)
end
# ╔═╡ d1970a34-1ef7-11eb-3e1f-0fd3b8e9657f
md"""
Below, we create a scene with a number of balls inside of it.
While working on your code, work in small increments, and do frequent checks to see if your code is working. Feel free to modify this test scene, or to create a simpler one.
"""
# ╔═╡ 16f4c8e6-2051-11eb-2f23-f7300abea642
main_scene = [
sky,
Sphere([0,0,-25], 20,
Surface(1.0, 0.0, RGBA(1,1,1,0.0), 1.5)),
Sphere([0,50,-100], 20,
Surface(0.0, 1.0, RGBA(0,0,0,0.0), 1.0)),
Sphere([-50,0,-25], 20,
Surface(0.0, 0.0, RGBA(0, .3, .8, 1), 1.0)),
Sphere([30, 25, -60], 20,
Surface(0.0, 0.75, RGBA(1,0,0,0.25), 1.5)),
Sphere([50, 0, -25], 20,
Surface(0.5, 0.0, RGBA(.1,.9,.1,0.5), 1.5)),
Sphere([-30, 25, -60], 20,
Surface(0.5, 0.5, RGBA(1,1,1,0), 1.5)),
]
# ╔═╡ 1f66ba6e-1ef8-11eb-10ba-4594f7c5ff19
let
cam = Camera((600,360), 16, -15, [0,10,100])
ray_trace(main_scene, cam; num_intersections=3)
end
# ╔═╡ 67c0bd70-206a-11eb-3935-83d32c67f2eb
md"""
## **Bonus:** Escher
If you managed to get through the exercises, we have a fun bonus exercise! The goal is to recreate this self-portrait by M.C. Escher:
"""
# ╔═╡ 748cbaa2-206c-11eb-2cc9-7fa74308711b
Resource("https://www.researchgate.net/profile/Madhu_Gupta22/publication/3427377/figure/fig1/AS:663019482775553@1535087571714/A-self-portrait-of-MC-Escher-1898-1972-in-spherical-mirror-dating-from-1935-titled.png", :width=>300)
# ╔═╡ 981e6bd2-206c-11eb-116d-6fad4e04ce34
md"""
It looks like M.C. Escher is a skillful raytracer, but so are we! To recreate this image, we can simplify it by having just two objects in our scene:
- A purely reflective sphere
- A skybox, containing an image of us!
Let's start with our old skybox, and set up our scene:
"""
# ╔═╡ 7a12a99a-206d-11eb-2393-bf28b881087a
escher_sphere = Sphere([0,0,0], 20,
Surface(1.0, 0.0, RGBA(1,1,1,0.0), 1.5))
# ╔═╡ 373b6a26-206d-11eb-1e67-9debb032f69e
escher_cam = Camera((300,300), 30, -10, [0,00,30])
# ╔═╡ 5dfec31c-206d-11eb-23a2-259f2c205cb5
md"""
👆 You can modify `escher_cam` to increase or descrease the resolution!
"""
# ╔═╡ 6f1dbf48-206d-11eb-24d3-5154703e1753
let
scene = [sky, escher_sphere]
ray_trace(scene, escher_cam; num_intersections=3)
end
# ╔═╡ dc786ccc-206e-11eb-29e2-99882e6613af
md"""
Awesome! Next, we want to set an _image_ as our skybox, instead of a gradient. To do so, we have written a function that converts the x,y,z coordinates of the intersection point with a skybox into a latitude/longitude pair, which we can use (after scaling, rounding & clamping) as pixel coordinates to index an image!
"""
# ╔═╡ 8ebe4cd6-2061-11eb-396b-45745bd7ec55
earth = load(download("https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Whole_world_-_land_and_oceans_12000.jpg/1280px-Whole_world_-_land_and_oceans_12000.jpg"))
# ╔═╡ 12d3b806-2062-11eb-20a8-7d1a33e4b073
function get_index_rational(A, x, y)
a, b = size(A)
u = clamp(floor(Int, x * (a-1)) + 1, 1, a)
v = clamp(floor(Int, y * (b-1)) + 1, 1, b)
A[u,v]
end
# ╔═╡ cc492966-2061-11eb-1000-d90c279c4668
function image_skybox(img)
f = function(position, skybox)
lon = atan(-position[1], position[3])
lat = -atan(position[2], norm(position[[1,3]]))
get_index_rational(img, (lat/(pi)) + .5, (lon/2pi) + .5)
end
SkyBox([0.0, 0.0, 0.0], 1000, f)
end
# ╔═╡ 137834d4-206d-11eb-0082-7b87bf222808
earth_skybox = image_skybox(earth)
# ╔═╡ bff27890-206e-11eb-2e40-696424a0b8be
let
scene = [earth_skybox, escher_sphere]
ray_trace(scene, escher_cam; num_intersections=3)
end
# ╔═╡ b0bc76f8-206d-11eb-0cad-4bde96565fed
md"""
Great! It's like the Earth, but distorted. Notice that the continents are mirrored, and that you can see both poles at the same time.
Okay, self portrait time! Let's take a picture using your webcam, and we will use it as the skybox texture:
"""
# ╔═╡ 48166866-2070-11eb-2722-556a6719c2a2
md"""
👀 wow! It's _Planet $(student.name)_, surrounded by even more $(student.name).
When you look at the drawing by Escher, you see that he only occupies a small section of the 'skybox'. Behind Escher, you can see his cozy house, and in _front_ of him (i.e. _behind_ the glass sphere, from his persective), you see a gray background.
What we need is a 360° panoramic image of our room. One option is that you make one! There are great tutorials online, and maybe you can use an app to do this with your phone.
Another option is that we approximate the panaroma by _padding_ the image of your face. You can pad the image with a solid color, you can use a gradient, you can use the earth satellite image, you can add noise, and so on. [Here](https://user-images.githubusercontent.com/6933510/98426463-31a64f00-2099-11eb-96dd-9f0f065e0da4.png) is an example of what I made.
"""
# ╔═╡ 6480b85c-2067-11eb-0262-f752d306d8ae
function padded(img)
return missing
end
# ╔═╡ 3de614da-2091-11eb-361a-83bcf357c394
md"""
Let's put it all together!
"""
# ╔═╡ ebd05bf0-19c3-11eb-2559-7d0745a84025
if student.name == "Jazzy Doe" || student.kerberos_id == "jazz"
md"""
!!! danger "Before you submit"
Remember to fill in your **name** and **Kerberos ID** at the top of this notebook.
"""
end
# ╔═╡ ec275590-19c3-11eb-23d0-cb3d9f62ba92
md"## Function library
Just some helper functions used in the notebook."
# ╔═╡ 2c36d3e8-2065-11eb-3a12-8382f8539ea6
function process_raw_camera_data(raw_camera_data)
# the raw image data is a long byte array, we need to transform it into something
# more "Julian" - something with more _structure_.
# The encoding of the raw byte stream is:
# every 4 bytes is a single pixel
# every pixel has 4 values: Red, Green, Blue, Alpha
# (we ignore alpha for this notebook)
# So to get the red values for each pixel, we take every 4th value, starting at
# the 1st:
reds_flat = UInt8.(raw_camera_data["data"][1:4:end])
greens_flat = UInt8.(raw_camera_data["data"][2:4:end])
blues_flat = UInt8.(raw_camera_data["data"][3:4:end])
# but these are still 1-dimensional arrays, nicknamed 'flat' arrays
# We will 'reshape' this into 2D arrays:
width = raw_camera_data["width"]
height = raw_camera_data["height"]
# shuffle and flip to get it in the right shape
reds = reshape(reds_flat, (width, height))' / 255.0
greens = reshape(greens_flat, (width, height))' / 255.0
blues = reshape(blues_flat, (width, height))' / 255.0
# we have our 2D array for each color
# Let's create a single 2D array, where each value contains the R, G and B value of
# that pixel
RGB.(reds, greens, blues)
end
# ╔═╡ f7b5ff68-2064-11eb-3be3-554519ca4847
function camera_input(;max_size=200, default_url="https://i.imgur.com/SUmi94P.png")
"""
<span class="pl-image waiting-for-permission">
<style>
.pl-image.popped-out {
position: fixed;
top: 0;
right: 0;
z-index: 5;
}
.pl-image #video-container {
width: 250px;
}
.pl-image video {
border-radius: 1rem 1rem 0 0;
}
.pl-image.waiting-for-permission #video-container {
display: none;
}
.pl-image #prompt {
display: none;
}
.pl-image.waiting-for-permission #prompt {
width: 250px;
height: 200px;
display: grid;
place-items: center;
font-family: monospace;
font-weight: bold;
text-decoration: underline;
cursor: pointer;
border: 5px dashed rgba(0,0,0,.5);
}
.pl-image video {
display: block;
}
.pl-image .bar {
width: inherit;
display: flex;
z-index: 6;
}
.pl-image .bar#top {
position: absolute;
flex-direction: column;
}
.pl-image .bar#bottom {
background: black;
border-radius: 0 0 1rem 1rem;
}
.pl-image .bar button {
flex: 0 0 auto;
background: rgba(255,255,255,.8);
border: none;
width: 2rem;
height: 2rem;
border-radius: 100%;
cursor: pointer;
z-index: 7;
}
.pl-image .bar button#shutter {
width: 3rem;
height: 3rem;
margin: -1.5rem auto .2rem auto;
}
.pl-image video.takepicture {
animation: pictureflash 200ms linear;
}
@keyframes pictureflash {
0% {
filter: grayscale(1.0) contrast(2.0);
}
100% {
filter: grayscale(0.0) contrast(1.0);
}
}
</style>
<div id="video-container">
<div id="top" class="bar">
<button id="stop" title="Stop video">✖</button>
<button id="pop-out" title="Pop out/pop in">⏏</button>
</div>
<video playsinline autoplay></video>
<div id="bottom" class="bar">
<button id="shutter" title="Click to take a picture">📷</button>
</div>
</div>
<div id="prompt">
<span>
Enable webcam
</span>
</div>
<script>
// based on https://github.com/fonsp/printi-static (by the same author)
const span = currentScript.parentElement
const video = span.querySelector("video")
const popout = span.querySelector("button#pop-out")
const stop = span.querySelector("button#stop")
const shutter = span.querySelector("button#shutter")
const prompt = span.querySelector(".pl-image #prompt")
const maxsize = $(max_size)
const send_source = (source, src_width, src_height) => {
const scale = Math.min(1.0, maxsize / src_width, maxsize / src_height)
const width = Math.floor(src_width * scale)
const height = Math.floor(src_height * scale)
const canvas = html`<canvas width=\${width} height=\${height}>`
const ctx = canvas.getContext("2d")
ctx.drawImage(source, 0, 0, width, height)
span.value = {
width: width,
height: height,
data: ctx.getImageData(0, 0, width, height).data,
}
span.dispatchEvent(new CustomEvent("input"))
}
const clear_camera = () => {
window.stream.getTracks().forEach(s => s.stop());
video.srcObject = null;
span.classList.add("waiting-for-permission");
}
prompt.onclick = () => {
navigator.mediaDevices.getUserMedia({
audio: false,
video: {
facingMode: "environment",
},
}).then(function(stream) {
stream.onend = console.log
window.stream = stream
video.srcObject = stream
window.cameraConnected = true
video.controls = false
video.play()
video.controls = false
span.classList.remove("waiting-for-permission");
}).catch(function(error) {
console.log(error)
});
}
stop.onclick = () => {
clear_camera()
}
popout.onclick = () => {
span.classList.toggle("popped-out")
}
shutter.onclick = () => {
const cl = video.classList
cl.remove("takepicture")
void video.offsetHeight
cl.add("takepicture")
video.play()
video.controls = false
console.log(video)
send_source(video, video.videoWidth, video.videoHeight)
}
document.addEventListener("visibilitychange", () => {
if (document.visibilityState != "visible") {
clear_camera()
}
})
// Set a default image
const img = html`<img crossOrigin="anonymous">`
img.onload = () => {
console.log("helloo")
send_source(img, img.width, img.height)
}
img.src = "$(default_url)"
console.log(img)
</script>
</span>
""" |> HTML
end
# ╔═╡ 27d64432-2065-11eb-3795-e99b1d6718d2
@bind wow camera_input()
# ╔═╡ 64ce8106-2065-11eb-226c-0bcaf7e3f871
face = process_raw_camera_data(wow)
# ╔═╡ 06ac2efc-206f-11eb-1a73-9306bf5f7a9c
let
face_skybox = image_skybox(face)
scene = [face_skybox, escher_sphere]
ray_trace(scene, escher_cam; num_intersections=3)
end
# ╔═╡ 7d03b258-2067-11eb-3070-1168e282b2ea
padded(face)
# ╔═╡ aa597a16-2066-11eb-35ae-3170468a90ed
@bind escher_face_data camera_input()
# ╔═╡ c68dbe1c-2066-11eb-048d-038df2c68a8b
let
img = process_raw_camera_data(escher_face_data)
img_padded = padded(img)
scene = [
image_skybox(padded(img)),
escher_sphere,
]
ray_trace(scene, escher_cam; num_intersections=20)
end
# ╔═╡ ec31dce0-19c3-11eb-1487-23cc20cd5277
hint(text) = Markdown.MD(Markdown.Admonition("hint", "Hint", [text]))
# ╔═╡ 7c804c30-208d-11eb-307c-076f2086ae73
hint(md"""If you are getting a _"Circular Defintions"_ error - this could be because of a Pluto limitation. If two functions call each other, they need to be contained in a single cell, using a `begin end` block.""")
# ╔═╡ ec3ed530-19c3-11eb-10bb-a55e77550d1f
almost(text) = Markdown.MD(Markdown.Admonition("warning", "Almost there!", [text]))
# ╔═╡ ec4abc12-19c3-11eb-1ca4-b5e9d3cd100b
still_missing(text=md"Replace `missing` with your answer.") = Markdown.MD(Markdown.Admonition("warning", "Here we go!", [text]))
# ╔═╡ ec57b460-19c3-11eb-2142-07cf28dcf02b
keep_working(text=md"The answer is not quite right.") = Markdown.MD(Markdown.Admonition("danger", "Keep working on it!", [text]))
# ╔═╡ ec5d59b0-19c3-11eb-0206-cbd1a5415c28
yays = [md"Fantastic!", md"Splendid!", md"Great!", md"Yay ❤", md"Great! 🎉", md"Well done!", md"Keep it up!", md"Good job!", md"Awesome!", md"You got the right answer!", md"Let's move on to the next section."]
# ╔═╡ ec698eb0-19c3-11eb-340a-e319abb8ebb5
correct(text=rand(yays)) = Markdown.MD(Markdown.Admonition("correct", "Got it!", [text]))
# ╔═╡ ec7638e0-19c3-11eb-1ca1-0b3aa3b40240
not_defined(variable_name) = Markdown.MD(Markdown.Admonition("danger", "Oopsie!", [md"Make sure that you define a variable called **$(Markdown.Code(string(variable_name)))**"]))
# ╔═╡ ec85c940-19c3-11eb-3375-a90735beaec1
TODO = html"<span style='display: inline; font-size: 2em; color: purple; font-weight: 900;'>TODO</span>"
# ╔═╡ 8cfa4902-1ad3-11eb-03a1-736898ff9cef
TODO_note(text) = Markdown.MD(Markdown.Admonition("warning", "TODO note", [text]))
# ╔═╡ Cell order:
# ╟─1df32310-19c4-11eb-0824-6766cd21aaf4
# ╟─1df82c20-19c4-11eb-0959-8543a0d5630d
# ╟─1e109620-19c4-11eb-013e-1bc95c14c2ba
# ╠═1e202680-19c4-11eb-29a7-99061b886b3c
# ╟─e4d2f6f6-2089-11eb-0b4a-0d22f72f72ba
# ╟─1e2cd0b0-19c4-11eb-3583-0b82092139aa
# ╠═c3e52bf2-ca9a-11ea-13aa-03a4335f2906
# ╟─4e917968-1f87-11eb-371f-e3899b76dc24
# ╠═24b0d4ba-192c-11eb-0f66-e77b544b0510
# ╟─c6e8d30e-205c-11eb-271c-6165a164073d
# ╠═d851a202-1ca0-11eb-3da0-51fcb656783c
# ╠═8acef4b0-1a09-11eb-068d-79a259244ed1
# ╠═8018fbf0-1a05-11eb-3032-95aae07ca78f
# ╠═fcde90ca-2048-11eb-3e96-f9f47b6154e8
# ╠═89e98868-1fb2-11eb-078d-c9298d8a9970
# ╟─dc36ceaa-205c-11eb-169c-bb4c36aaec9f
# ╠═43306bd4-194d-11eb-2e30-07eabb8b29ef
# ╠═14dc73d2-1a0d-11eb-1a3c-0f793e74da9b
# ╟─7f0bf286-2071-11eb-0cac-6d10c93bab6c
# ╠═8a4e888c-1ef7-11eb-2a52-17db130458a5
# ╠═9c3bdb62-1ef7-11eb-2204-417510bf0d72
# ╠═cb7ed97e-1ef7-11eb-192c-abfd66238378
# ╠═093b9e4a-1f8a-11eb-1d32-ad1d85ddaf42
# ╠═6fdf613c-193f-11eb-0029-957541d2ed4d
# ╟─452d6668-1ec7-11eb-3b0a-0b8f45b43fd5
# ╟─791f0bd2-1ed1-11eb-0925-13c394b901ce
# ╟─1a446de6-1ec9-11eb-1e2f-6f4376005d24
# ╠═88576c6e-1ecb-11eb-3e34-830aeb433df1
# ╠═e774d6a8-2058-11eb-015a-83b4b6104e6e
# ╟─8f73824e-1ecb-11eb-0b28-4d1bc0eefbc3
# ╠═4006566e-1ecd-11eb-2ce1-9d1107186784
# ╠═156c0d7a-2071-11eb-1551-4f2d393df6c8
# ╠═2838c1e4-2071-11eb-13d8-1da955fbf544
# ╠═595acf48-1ef6-11eb-0b46-934d17186e7b
# ╠═b7fa4512-2089-11eb-255d-4d6de9cdfb8e
# ╟─494687f6-1ecd-11eb-3ada-6f11f45aa74f
# ╠═9e71183c-1ef4-11eb-1802-3fc60b51ceba
# ╟─aa9e61aa-1ef4-11eb-0b56-cd7ded52b640
# ╠═c947f546-1ef5-11eb-0f02-054f4e7ae871
# ╠═a919c880-206e-11eb-2796-55ccd9dbe619
# ╟─49651bc6-2071-11eb-1aa0-ff829f7b4350
# ╠═daf80644-2070-11eb-3363-c577ae5846b3
# ╠═a0b84f62-2047-11eb-348c-db83f4e6c39c
# ╟─df3f2178-1ef5-11eb-3098-b1c8c67cf136
# ╠═6b91a58a-1ef6-11eb-1c36-2f44713905e1
# ╟─04a86366-208b-11eb-1977-ff7e4ae6b714
# ╠═a9754410-204d-11eb-123e-e5c5f87ae1c5
# ╠═086e1956-204e-11eb-2524-f719504fb95b
# ╠═95ca879a-204d-11eb-3473-959811aa8320
# ╠═1f66ba6e-1ef8-11eb-10ba-4594f7c5ff19
# ╟─d1970a34-1ef7-11eb-3e1f-0fd3b8e9657f
# ╠═16f4c8e6-2051-11eb-2f23-f7300abea642
# ╟─7c804c30-208d-11eb-307c-076f2086ae73
# ╟─67c0bd70-206a-11eb-3935-83d32c67f2eb