|
| 1 | +submodule (stdlib_quadrature) stdlib_quadrature_gauss |
| 2 | + use stdlib_specialfunctions, only: legendre, dlegendre |
| 3 | + implicit none |
| 4 | + |
| 5 | + real(dp), parameter :: pi = acos(-1._dp) |
| 6 | + real(dp), parameter :: tolerance = 4._dp * epsilon(1._dp) |
| 7 | + integer, parameter :: newton_iters = 100 |
| 8 | + |
| 9 | +contains |
| 10 | + |
| 11 | + pure module subroutine gauss_legendre_fp64 (x, w, interval) |
| 12 | + real(dp), intent(out) :: x(:), w(:) |
| 13 | + real(dp), intent(in), optional :: interval(2) |
| 14 | + |
| 15 | + associate (n => size(x)-1 ) |
| 16 | + select case (n) |
| 17 | + case (0) |
| 18 | + x = 0 |
| 19 | + w = 2 |
| 20 | + case (1) |
| 21 | + x(1) = -sqrt(1._dp/3._dp) |
| 22 | + x(2) = -x(1) |
| 23 | + w = 1 |
| 24 | + case default |
| 25 | + block |
| 26 | + integer :: i,j |
| 27 | + real(dp) :: leg, dleg, delta |
| 28 | + |
| 29 | + do i = 0, (n+1)/2 - 1 |
| 30 | + ! use Gauss-Chebyshev points as an initial guess |
| 31 | + x(i+1) = -cos((2*i+1)/(2._dp*n+2._dp) * pi) |
| 32 | + do j = 1, newton_iters |
| 33 | + leg = legendre(n+1,x(i+1)) |
| 34 | + dleg = dlegendre(n+1,x(i+1)) |
| 35 | + delta = -leg/dleg |
| 36 | + x(i+1) = x(i+1) + delta |
| 37 | + if ( abs(delta) <= tolerance * abs(x(i+1)) ) exit |
| 38 | + end do |
| 39 | + x(n-i+1) = -x(i+1) |
| 40 | + |
| 41 | + dleg = dlegendre(n+1,x(i+1)) |
| 42 | + w(i+1) = 2._dp/((1-x(i+1)**2)*dleg**2) |
| 43 | + w(n-i+1) = w(i+1) |
| 44 | + end do |
| 45 | + |
| 46 | + if (mod(n,2) == 0) then |
| 47 | + x(n/2+1) = 0 |
| 48 | + |
| 49 | + dleg = dlegendre(n+1, 0.0_dp) |
| 50 | + w(n/2+1) = 2._dp/(dleg**2) |
| 51 | + end if |
| 52 | + end block |
| 53 | + end select |
| 54 | + end associate |
| 55 | + |
| 56 | + if (present(interval)) then |
| 57 | + associate ( a => interval(1) , b => interval(2) ) |
| 58 | + x = 0.5_dp*(b-a)*x+0.5_dp*(b+a) |
| 59 | + x(1) = interval(1) |
| 60 | + x(size(x)) = interval(2) |
| 61 | + w = 0.5_dp*(b-a)*w |
| 62 | + end associate |
| 63 | + end if |
| 64 | + end subroutine |
| 65 | + |
| 66 | + pure module subroutine gauss_legendre_lobatto_fp64 (x, w, interval) |
| 67 | + real(dp), intent(out) :: x(:), w(:) |
| 68 | + real(dp), intent(in), optional :: interval(2) |
| 69 | + |
| 70 | + associate (n => size(x)-1) |
| 71 | + select case (n) |
| 72 | + case (1) |
| 73 | + x(1) = -1 |
| 74 | + x(2) = 1 |
| 75 | + w = 1 |
| 76 | + case default |
| 77 | + block |
| 78 | + integer :: i,j |
| 79 | + real(dp) :: leg, dleg, delta |
| 80 | + |
| 81 | + x(1) = -1._dp |
| 82 | + x(n+1) = 1._dp |
| 83 | + w(1) = 2._dp/(n*(n+1._dp)) |
| 84 | + w(n+1) = 2._dp/(n*(n+1._dp)) |
| 85 | + |
| 86 | + do i = 1, (n+1)/2 - 1 |
| 87 | + ! initial guess from an approximate form given by SV Parter (1999) |
| 88 | + x(i+1) = -cos( (i+0.25_dp)*pi/n - 3/(8*n*pi*(i+0.25_dp))) |
| 89 | + do j = 1, newton_iters |
| 90 | + leg = legendre(n+1,x(i+1)) - legendre(n-1,x(i+1)) |
| 91 | + dleg = dlegendre(n+1,x(i+1)) - dlegendre(n-1,x(i+1)) |
| 92 | + delta = -leg/dleg |
| 93 | + x(i+1) = x(i+1) + delta |
| 94 | + if ( abs(delta) <= tolerance * abs(x(i+1)) ) exit |
| 95 | + end do |
| 96 | + x(n-i+1) = -x(i+1) |
| 97 | + |
| 98 | + leg = legendre(n, x(i+1)) |
| 99 | + w(i+1) = 2._dp/(n*(n+1._dp)*leg**2) |
| 100 | + w(n-i+1) = w(i+1) |
| 101 | + end do |
| 102 | + |
| 103 | + if (mod(n,2) == 0) then |
| 104 | + x(n/2+1) = 0 |
| 105 | + |
| 106 | + leg = legendre(n, 0.0_dp) |
| 107 | + w(n/2+1) = 2._dp/(n*(n+1._dp)*leg**2) |
| 108 | + end if |
| 109 | + end block |
| 110 | + end select |
| 111 | + end associate |
| 112 | + |
| 113 | + if (present(interval)) then |
| 114 | + associate ( a => interval(1) , b => interval(2) ) |
| 115 | + x = 0.5_dp*(b-a)*x+0.5_dp*(b+a) |
| 116 | + x(1) = interval(1) |
| 117 | + x(size(x)) = interval(2) |
| 118 | + w = 0.5_dp*(b-a)*w |
| 119 | + end associate |
| 120 | + end if |
| 121 | + end subroutine |
| 122 | +end submodule |
0 commit comments