forked from vvanirudh/tensorflow-vrnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_vrnn.py
462 lines (383 loc) · 18.8 KB
/
model_vrnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
'''
Variational RNN model using TensorFlow
Model introduced in https://arxiv.org/abs/1506.02216
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., & Bengio, Y. (2015).
A recurrent latent variable model for sequential data.
In Advances in neural information processing systems (pp. 2980-2988).
Code original author : phreeza (taken from https://github.com/phreeza/tensorflow-vrnn)
Author : Anirudh Vemula
Date : December 4th, 2016
'''
import tensorflow as tf
import numpy as np
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
'''
Function that defines a linear NN layer that just performs W*x + b
Params:
input_ : The input data
output_size : Dimensions of the output
scope (optional) : Variable scope
stddev (optional) : Standard deviation of the normal distribution for weight initialization
bias_start (optional) : Constant to initialize the bias vector with
with_w (optional) : Return weights with the output or not
'''
# Get shape of the input
# [num_inputs, input_dimension]
shape = input_.get_shape().as_list()
# Define variable scope
with tf.variable_scope(scope or "Linear"):
# Initialize W
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
# Initialize b
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
# Return weights with output?
if with_w:
return tf.add(tf.matmul(input_, matrix), bias), matrix, bias
else:
return tf.add(tf.matmul(input_, matrix), bias)
class VartiationalRNNCell(tf.nn.rnn_cell.RNNCell):
'''
Class to define a Variational RNN cell
Inherits TensorFlow RNNCell
'''
def __init__(self, x_dim, h_dim, z_dim=100):
'''
Initialization function
Params:
x_dim : Dimensions of the input data
h_dim : Dimensions of the hidden state
z_dim : Dimensions of the latent variable
'''
# Store dimensions of data
self.n_h = h_dim
self.n_x = x_dim
self.n_z = z_dim
# Store dimensions of extracted features from x and z
self.n_x_1 = x_dim
self.n_z_1 = z_dim
# Dimensions of the encoder, decoder and prior networks
self.n_enc_hidden = z_dim
self.n_dec_hidden = x_dim
self.n_prior_hidden = z_dim
# LSTM cell with the hidden state dimension, as given
self.lstm = tf.nn.rnn_cell.LSTMCell(self.n_h, state_is_tuple=True)
@property
def state_size(self):
'''
Returns the hidden state dimensions of the VRNNCell
Since state_is_tuple is True, we have a tuple
'''
return (self.n_h, self.n_h)
@property
def output_size(self):
'''
Returns the output dimensions of the VRNNCell
'''
return self.n_h
def __call__(self, x, state, scope=None):
'''
A single step of the VRNN Cell
Params:
x : input data
state : Current hidden state of the VRNNCell
scope (optional) : Variable scope
'''
# Define variable scope
with tf.variable_scope(scope or type(self).__name__):
# Get the hidden and cell state from the input state
h, c = state
# Prior variable scope
with tf.variable_scope("Prior"):
# A ReLU nonlinear layer on top of the hidden state h
# resulting in an output of the same dimension as z
with tf.variable_scope("hidden"):
prior_hidden = tf.nn.relu(linear(h, self.n_prior_hidden))
# A linear layer on top of the previous layer output to get mu
with tf.variable_scope("mu"):
prior_mu = linear(prior_hidden, self.n_z)
# A softplus nonlinear layer on top of prior_hidden to get sigma
with tf.variable_scope("sigma"):
prior_sigma = tf.nn.softplus(linear(prior_hidden, self.n_z))
# A ReLU nonlinear layer on top of input data x to extract relevant features
# of the same dimension as x
with tf.variable_scope("phi_x"):
x_1 = tf.nn.relu(linear(x, self.n_x_1))
# Encoder
with tf.variable_scope("Encoder"):
# A ReLU nonlinear layer on top of concatentation of input data features and hidden state
# resulting in an output of the same dimensions as z
with tf.variable_scope("hidden"):
enc_hidden = tf.nn.relu(linear(tf.concat(1, (x_1, h)), self.n_enc_hidden))
# A linear layer on top of the previous layer to get mu
with tf.variable_scope("mu"):
enc_mu = linear(enc_hidden, self.n_z)
# A softplus nonlinear layer on top of enc_hidden to get sigma
with tf.variable_scope("sigma"):
enc_sigma = tf.nn.softplus(linear(enc_hidden, self.n_z))
# Sample the auxiliary variable epsilon from a standard normal distribution
# epsilon is of shape (num_inputs, dimension_of_z)
eps = tf.random_normal((x.get_shape().as_list()[0], self.n_z), 0.0, 1.0, dtype=tf.float32)
# Reparameterization trick. Get value of z
# z = mu + sigma*epsilon
z = tf.add(enc_mu, tf.mul(enc_sigma, eps))
# A ReLU nonlinear layer on top of latent variable z to extract relevant features
# of the same dimension as z
with tf.variable_scope("phi_z"):
z_1 = tf.nn.relu(linear(z, self.n_z_1))
# Decoder
with tf.variable_scope("Decoder"):
# A ReLU nonlinear layer on top of concatenation of latent variable features and hidden state
# resulting in an output of the same dimensions as x
with tf.variable_scope("hidden"):
dec_hidden = tf.nn.relu(linear(tf.concat(1, (z_1, h)), self.n_dec_hidden))
# A linear layer on top of the previous layer to get mu
with tf.variable_scope("mu"):
dec_mu = linear(dec_hidden, self.n_x)
# A softplus nonlinear layer on top of dec_hidden to get sigma
with tf.variable_scope("sigma"):
dec_sigma = tf.nn.softplus(linear(dec_hidden, self.n_x))
# A sigmoid nonlinear layer on top of dec_hidden to get rho (correlation?)
# NOTE not proposed in paper, but makes sense
with tf.variable_scope("rho"):
dec_rho = tf.nn.sigmoid(linear(dec_hidden, self.n_x))
# Do one step of LSTM with input as concatenation of the input data features and latent variable features
output, state2 = self.lstm(tf.concat(1, (x_1, z_1)), state)
# Return all learnt parameters and the LSTM final state
return (enc_mu, enc_sigma, dec_mu, dec_sigma, dec_rho, prior_mu, prior_sigma), state2
class VRNN():
'''
Class for the VRNN network
'''
def __init__(self, args, sample=False):
'''
Initialization function
Params:
args : Arguments for the model
sample : Training/inference mode
'''
# Helper functions
def tf_normal(y, mu, s, rho):
'''
Computes the log likelihood w.r.t Gaussian distribution
Params:
y : input data
mu : mean
s : sigma
rho : correlation
'''
# Define variable scope
with tf.variable_scope('normal'):
# Compute sigma squared (or variance)
ss = tf.maximum(1e-10, tf.square(s))
# Compute (y - mu)
norm = tf.sub(y[:, :args.chunk_samples], mu)
# Compute (y-mu)^2/sigma^2
z = tf.div(tf.square(norm), ss)
# Compute denominator log(2*pi*sigma^2)
denom_log = tf.log(2*np.pi*ss, name='denom_log')
# TODO Figure out what this exactly does
result = tf.reduce_sum(z+denom_log, 1)/2
# -
# (tf.log(tf.maximum(1e-20,rho),name='log_rho')*(1+y[:,args.chunk_samples:])
# +tf.log(tf.maximum(1e-20,1-rho),name='log_rho_inv')*(1-y[:,args.chunk_samples:]))/2, 1)
return result
def tf_kl_gaussgauss(mu_1, sigma_1, mu_2, sigma_2):
'''
Function to compute the KL-divergence between two Gaussian
distributions
Params:
mu_1, sigma_1 : mean and std dev of first distribution
mu_2, sigma_2 : mean and std dev of second distribution
'''
# Define variable scope
with tf.variable_scope("kl_gaussgauss"):
# Compute the KL-divergence term given in
# Auto-encoding VB paper eqn. 10
# TODO derive this
return tf.reduce_sum(0.5 * (
2 * tf.log(tf.maximum(1e-9, sigma_2), name='log_sigma_2')
- 2 * tf.log(tf.maximum(1e-9, sigma_1), name='log_sigma_1')
+ (tf.square(sigma_1) + tf.square(mu_1 - mu_2)) / tf.maximum(1e-9, (tf.square(sigma_2))) - 1
), 1)
def get_lossfunc(enc_mu, enc_sigma, dec_mu, dec_sigma, dec_rho, prior_mu, prior_sigma, y):
'''
Function to compute loss given the predicted parameters and the true data
Params:
enc_mu, enc_sigma : mean and stddev for encoder
dec_mu, dec_sigma : mean and stddev for decoder
dec_rho : correlation for decoder
prior_mu, prior_sigma : mean and stddev for prior distribution
y : true data
'''
# Compute KL divergence between encoder distribution and the prior distribution
kl_loss = tf_kl_gaussgauss(enc_mu, enc_sigma, prior_mu, prior_sigma)
# Compute the log likelihood of the true data w.r.t the decoder distribution (reconstruction error)
likelihood_loss = tf_normal(y, dec_mu, dec_sigma, dec_rho)
# Add both the losses to get the final loss
return tf.reduce_mean(kl_loss + likelihood_loss)
# return tf.reduce_mean(likelihood_loss)
# Store input arguments
self.args = args
# If in inference mode, then batch size and sequence length is 1
if sample:
args.batch_size = 1
args.seq_length = 1
# Define the VRNNCell
# TODO what is args.chunk_samples?
cell = VartiationalRNNCell(args.chunk_samples, args.rnn_size, args.latent_size)
# Store the cell
self.cell = cell
# Define placeholders for the input, target data
# input_data would be of size batch_size x seq_length x (2*chunk_samples)
self.input_data = tf.placeholder(dtype=tf.float32, shape=[args.batch_size, args.seq_length, 2*args.chunk_samples], name='input_data')
# target_data would be of size batch_size x seq_length x (2*chunk_samples)
self.target_data = tf.placeholder(dtype=tf.float32, shape=[args.batch_size, args.seq_length, 2*args.chunk_samples], name='target_data')
# Initialize the cell state and the hidden state of the VRNNCell (remember state_is_tuple is true)
self.initial_state_c, self.initial_state_h = cell.zero_state(batch_size=args.batch_size, dtype=tf.float32)
# input shape: (batch_size, n_steps, n_input)
with tf.variable_scope("inputs"):
# Permute the input data to be of shape (seq_length x batch_size x n_input)
inputs = tf.transpose(self.input_data, [1, 0, 2])
# Reshape so that the shape is ((seq_length*batch_size) x n_input)
inputs = tf.reshape(inputs, [-1, 2*args.chunk_samples])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
inputs = tf.split(0, args.seq_length, inputs) # n_steps * (batch_size, n_input)
# Flatten the target data to be of shape ((batch_size*seq_length) x n_input)
flat_target_data = tf.reshape(self.target_data, [-1, 2*args.chunk_samples])
# Store flattened target data
self.target = flat_target_data
# Flatten input data in the same way as target_data was flattened
self.flat_input = tf.reshape(tf.transpose(tf.pack(inputs), [1, 0, 2]), [args.batch_size*args.seq_length, -1])
# Store the list of inputs
self.input = tf.pack(inputs)
# Get vrnn cell output
outputs, last_state = tf.nn.rnn(cell, inputs, initial_state=(self.initial_state_c, self.initial_state_h))
# print outputs
# outputs = map(tf.pack,zip(*outputs))
outputs_reshape = []
names = ["enc_mu", "enc_sigma", "dec_mu", "dec_sigma", "dec_rho", "prior_mu", "prior_sigma"]
for n, name in enumerate(names):
with tf.variable_scope(name):
# Pack the list of values into a tensor
x = tf.pack([o[n] for o in outputs])
# Permute so that it is of shape batch_size x seq_length x n_input
x = tf.transpose(x, [1, 0, 2])
# Convert it into the shape of flattened data
x = tf.reshape(x, [args.batch_size*args.seq_length, -1])
# Append to list of outputs
outputs_reshape.append(x)
# Extract tensors of predicted parameters
enc_mu, enc_sigma, dec_mu, dec_sigma, dec_rho, prior_mu, prior_sigma = outputs_reshape
# Store the final cell and hidden state of the VRNNCell
self.final_state_c, self.final_state_h = last_state
# Store the decoder parameters
self.mu = dec_mu
self.sigma = dec_sigma
self.rho = dec_rho
# Compute the loss
lossfunc = get_lossfunc(enc_mu, enc_sigma, dec_mu, dec_sigma, dec_sigma, prior_mu, prior_sigma, flat_target_data)
# Store the loss as cost
with tf.variable_scope('cost'):
self.cost = lossfunc
tf.scalar_summary('cost', self.cost)
tf.scalar_summary('mu', tf.reduce_mean(self.mu))
tf.scalar_summary('sigma', tf.reduce_mean(self.sigma))
# Learning rate
self.lr = tf.Variable(0.0, trainable=False)
# Get all trainable variables
tvars = tf.trainable_variables()
# Print the names of all trainable variables
for t in tvars:
print t.name
# Compute gradients for all trainable variables
grads = tf.gradients(self.cost, tvars)
# grads = tf.cond(
# tf.global_norm(grads) > 1e-20,
# lambda: tf.clip_by_global_norm(grads, args.grad_clip)[0],
# lambda: grads)
# Define the optimizer
optimizer = tf.train.AdamOptimizer(self.lr)
# Define the train operator and apply gradients
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
# self.saver = tf.train.Saver(tf.all_variables())
def sample(self, sess, args, num=4410, start=None):
'''
Function to do inference in the model
Params:
sess: TensorFlow session
args: input arguments
num: Number of steps to be predicted
start (optional): Data to start with
'''
# a helper function
def sample_gaussian(mu, sigma):
'''
Function to get a sample from a Gaussian distribution
Params:
mu : mean
sigma : stddev
'''
return mu + (sigma*np.random.randn(*sigma.shape))
# Initialize the state of the VRNNCell
prev_state = sess.run(self.cell.zero_state(1, tf.float32))
# If no start data
if start is None:
# Initialize with a random input of seq_length 1 and dimensions n_input
prev_x = np.random.randn(1, 1, 2*args.chunk_samples)
# If start data is a vector
elif len(start.shape) == 1:
# Reshape it to size 1 x 1 x n_input
prev_x = start[np.newaxis, np.newaxis, :]
# If start data is a matrix
elif len(start.shape) == 2:
# For all time-steps until the last
for i in range(start.shape[0]-1):
# Get the input data
prev_x = start[i, :]
# Reshape it to 1 x 1 x n_input
prev_x = prev_x[np.newaxis, np.newaxis, :]
# Construct the feed dict
feed = {self.input_data: prev_x,
self.initial_state_c: prev_state[0],
self.initial_state_h: prev_state[1]}
# Run session and get the predicted parameters and final state
[o_mu, o_sigma, o_rho, prev_state_c, prev_state_h] = sess.run(
[self.mu, self.sigma, self.rho,
self.final_state_c, self.final_state_h], feed)
# Update the state
prev_state[0] = prev_state_c
prev_state[1] = prev_state_h
# Store the last time-step input
prev_x = start[-1, :]
# Reshape it to shape 1 x 1 x n_input
prev_x = prev_x[np.newaxis, np.newaxis, :]
# Matrices to store predicted parameters and data
chunks = np.zeros((num, 2*args.chunk_samples), dtype=np.float32)
mus = np.zeros((num, args.chunk_samples), dtype=np.float32)
sigmas = np.zeros((num, args.chunk_samples), dtype=np.float32)
# For each time-step at prediction time
for i in xrange(num):
# Construct the feed dict
feed = {self.input_data: prev_x,
self.initial_state_c: prev_state[0],
self.initial_state_h: prev_state[1]}
# Run session and get the predicted parameters and final state
[o_mu, o_sigma, o_rho, next_state_c, next_state_h] = sess.run([self.mu, self.sigma,
self.rho, self.final_state_c, self.final_state_h], feed)
# Sample from the predicted gaussian to get the next input
# TODO What is this? What is the second half of each row?
next_x = np.hstack((sample_gaussian(o_mu, o_sigma),
2.*(o_rho > np.random.random(o_rho.shape[:2]))-1.))
# Store the predicted data and parameters
chunks[i] = next_x
mus[i] = o_mu
sigmas[i] = o_sigma
# Construct the data for next time step
prev_x = np.zeros((1, 1, 2*args.chunk_samples), dtype=np.float32)
prev_x[0][0] = next_x
# Update state
prev_state = next_state_c, next_state_h
# return predicted data and parameters
return chunks, mus, sigmas