forked from CityU-AIM-Group/PRR-Imbalance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_func.py
156 lines (132 loc) · 5.5 KB
/
loss_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union
class CELossWithLogits(nn.Module):
"""
CE loss baseline
"""
def __init__(self, class_counts: Union[list, np.array]):
super(CELossWithLogits, self).__init__()
class_counts = torch.FloatTensor(class_counts)
self.num_labels = len(class_counts)
self.eps = 1.0e-6
def forward(self, logits, targets):
targets = F.one_hot(targets, self.num_labels)
max_element, _ = logits.max(axis=-1)
logits = logits - max_element[:, None] # to prevent overflow
numerator = torch.exp(logits)
denominator = torch.exp(logits)[:, None, :].sum(axis=-1)
sigma = numerator / (denominator + self.eps)
loss = (- targets * torch.log(sigma + self.eps)).sum(-1)
return loss.mean()
class CPA_Loss_init(nn.Module):
"""
Args:
class_counts: The list of the number of samples for each class.
beta: Scale parameter to adjust the strength.
"""
def __init__(self, class_counts: Union[list, np.array], beta: float = 0.8):
super(CPA_Loss_init, self).__init__()
class_counts = torch.FloatTensor(class_counts)
conditions = class_counts[:, None] > class_counts[None, :]
trues = (class_counts[None, :] / class_counts[:, None]) ** beta
# print(trues.dtype)
falses = torch.ones(len(class_counts), len(class_counts))
self.s = torch.where(conditions, trues, falses)
self.num_labels = len(class_counts)
self.eps = 1.0e-6
def forward(self, logits, targets, **kwargs):
targets = F.one_hot(targets, self.num_labels)
self.s = self.s.to(targets.device)
max_element, _ = logits.max(axis=-1)
logits = logits - max_element[:, None] # to prevent overflow
numerator = torch.exp(logits)
denominator = (
(1 - targets)[:, None, :]
* self.s[None, :, :]
* torch.exp(logits)[:, None, :]).sum(axis=-1) \
+ torch.exp(logits)
sigma = numerator / (denominator + self.eps)
loss = (- targets * torch.log(sigma + self.eps)).sum(-1)
return loss.mean()
class CPA_Loss(nn.Module):
"""
Args:
class_counts: The list of the number of samples for each class.
beta: Scale parameter to adjust the strength.
"""
def __init__(
self,
class_counts: Union[list, np.array],
beta: float = 0.8,
clamp_thres: float = 0,
tau: float = 3.0
):
super(CPA_Loss, self).__init__()
class_counts = torch.FloatTensor(class_counts)
conditions = class_counts[:, None] > class_counts[None, :]
trues = (class_counts[None, :] / class_counts[:, None]) ** beta
# print(trues.dtype)
falses = torch.ones(len(class_counts), len(class_counts))
self.global_factor = torch.where(conditions, trues, falses)
self.num_labels = len(class_counts)
self.eps = 1.0e-6
self.clamp_thres = clamp_thres
self.tau = tau
def proto_factor_cosine(self, source_proto, target_proto):
"""
[C, D]: D is 64 or 4
"""
# factor = 1
norm_source = torch.norm(source_proto, dim=-1, keepdim=False)
norm_target = torch.norm(target_proto.detach(), dim=-1, keepdim=False) # [C]
factor_refined = torch.sum(source_proto*target_proto.detach(), dim=-1, keepdim=False)/(norm_source*norm_target+self.eps)
return factor_refined # [C]
def forward(self, logits, targets, local_proto, global_proto):
targets = F.one_hot(targets, self.num_labels) # [N, C]
self.global_factor = self.global_factor.to(targets.device) # [C, C]
max_element, _ = logits.max(axis=-1)
# [N, C]
logits = logits - max_element[:, None] # to prevent overflow
numerator = torch.exp(logits) # [N, C]
denominator = (
(1 - targets)[:, None, :]
* self.global_factor[None, :, :]
* torch.exp(logits)[:, None, :]).sum(axis=-1) \
+ torch.exp(logits) # [N, C]
sigma = numerator / (denominator + self.eps) # [N, C]
# proto factor
cosine_score = self.proto_factor_cosine(source_proto=local_proto, target_proto=global_proto)
proto_factor = (1+self.tau)/(cosine_score+self.tau) #
# print(proto_factor)
# sum in categories
loss = (- proto_factor.view(1, -1) * targets * torch.log(sigma + self.eps)).sum(-1) # [N]
return loss.mean() # scalar
#########################
def global_avg_proto(local_protos):
# local_protos: client_num*C*D
return torch.mean(local_protos, dim=0, keepdim=False) # C*D
def global_gaussian_proto(local_protos):
# local_protos: client_num*C*D
mean = torch.mean(local_protos, dim=0, keepdim=False)
std = torch.clamp(
torch.std(local_protos, dim=0, keepdim=False),
min=1
)
sample = torch.randn(mean.shape).to(mean.device)
return sample * std + mean # C*D
###########################
def proto_factor_cosine(local_proto, global_proto):
"""
[C, D]: D is 64 or 4
"""
# factor = 1
norm_local = torch.norm(local_proto, dim=-1, keepdim=False)
norm_global = torch.norm(global_proto, dim=-1, keepdim=False) # [C]
factor_refined = torch.sum(local_proto*global_proto, dim=-1, keepdim=False)/(norm_local*norm_global+1e-6)
return factor_refined # [C]
def tau_func(cosine_score, tau):
proto_factor = (1+tau)/(cosine_score+tau) #
return proto_factor