-
Notifications
You must be signed in to change notification settings - Fork 10
/
Syntax.hs
719 lines (626 loc) · 30.3 KB
/
Syntax.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
-- The raw abstract syntax and (refined) abstract syntax for Frank
{-# LANGUAGE DataKinds,GADTs,StandaloneDeriving, FlexibleInstances,
UndecidableInstances, LambdaCase, KindSignatures,
PatternSynonyms #-}
module Syntax where
import qualified Data.Map.Strict as M
import qualified Data.Set as S
import Data.List
import Data.Functor.Identity
import BwdFwd
import Shonky.Renaming
{-- Elementary definitions --}
type Id = String
-- Top level definitions instantiate this class
class HasId a where
getId :: a -> Id
{-- For the definition of the AST as fixed-points --}
-- Fixed-point operator, takes a functor f
data Fix f = Fx (f (Fix f))
deriving instance Show (f (Fix f)) => Show (Fix f)
deriving instance Eq (f (Fix f)) => Eq (Fix f)
-- Gives the fixed-point of a functor "f" (see AST definitions),
-- parameterised by transformer "t" (e.g. AnnotT Raw)
type TFix (t :: (* -> *) -> (* -> *))
(f :: ((* -> *) -> (* -> *)) -> * -> *) = Fix (t (f t))
-- Annotation Transformer
-- Takes an annotation object "a",
-- a functor "f",
-- recursor type "r"
data AnnotT a f r = AnnF (f r, a)
deriving instance (Show (f r), Show a) => Show (AnnotT a f r)
deriving instance (Eq (f r), Eq a) => Eq (AnnotT a f r)
-- Like TFix, but with special transformer, namely "AnnotT a"
-- Takes an annotation object "a",
-- a functor "f"
type AnnotTFix a f = TFix (AnnotT a) f
-- Add annotation
ann :: a -> f (AnnotT a) (AnnotTFix a f) -> AnnotTFix a f
ann a v = Fx (AnnF (v, a))
-- Retrieve object + annotation
unAnn :: AnnotTFix a f -> (f (AnnotT a) (AnnotTFix a f), a)
unAnn (Fx (AnnF (v, a))) = (v, a)
-- Remove annotation
strip :: AnnotTFix a f -> f (AnnotT a) (AnnotTFix a f)
strip = fst . unAnn
-- Get annotation
attr :: AnnotTFix a f -> a
attr = snd . unAnn
-- Modify annotation
modifyAnn :: a -> AnnotTFix a f -> AnnotTFix a f
modifyAnn a = ann a . strip
-- To annotate the origin of a node
data Source = InCode (Int, Int)
| BuiltIn
| Implicit
| ImplicitNear (Int, Int)
| Generated
deriving (Show, Eq)
class HasSource a where
getSource :: a -> Source
instance HasSource a => HasSource (AnnotTFix a f) where
getSource x = getSource (attr x)
implicitNear :: HasSource a => a -> Source
implicitNear v = case getSource v of
InCode (line, col) -> ImplicitNear (line, col)
_ -> Implicit
{-- Syntax annotations: Raw syntax comes from the parser and is preprocessed
into Refined syntax. --}
class NotRaw a where
idNotRaw :: a -> a
instance NotRaw () where idNotRaw = Prelude.id
instance NotRaw (AnnotT a Identity ()) where idNotRaw = Prelude.id
class NotRefined a where
idNotRefined :: a -> a
class NotDesugared a where
idNotDesugared :: a -> a
instance NotDesugared (AnnotT a Identity ()) where idNotDesugared = id
-- output from the parser
newtype Raw = Raw Source
deriving (Show, Eq)
instance NotDesugared Raw where idNotDesugared = id
instance HasSource Raw where getSource (Raw s) = s
-- well-formed AST (after tidying up the output from the parser)
newtype Refined = Refined Source
deriving (Show, Eq)
instance NotRaw Refined where idNotRaw = id
instance NotDesugared Refined where idNotDesugared = id
instance HasSource Refined where getSource (Refined s) = s
-- desugaring of types:
-- * type variables are given unique names
-- * strings are lists of characters
newtype Desugared = Desugared Source
deriving (Show, Eq)
instance NotRaw Desugared where idNotRaw = id
instance HasSource Desugared where getSource (Desugared s) = s
-- Typed kind for distinguishing monomorphic and polymorphic variables.
newtype Typed = Typed Source
deriving (Show, Eq)
instance NotRaw Typed where idNotRaw = id
instance NotDesugared Typed where idNotDesugared = id
instance HasSource Typed where getSource (Typed s) = s
{- AST nodes -}
-- Parts of the grammar are specific to raw/refined/desugared syntax.
-- The following markings are used:
-- - require Raw/Refined/Desugared: t = AnnotT Raw
-- - require NotRaw / NotDesugared: NotRaw (t Identity ()) => annotation
data Prog t = MkProg [TopTm t]
deriving instance Show t => Show (Prog t)
deriving instance Eq t => Eq (Prog t)
-- A top-level multihandler signature and clause.
data MHSigF :: ((* -> *) -> (* -> *)) -> * -> * where
MkSig :: Id -> CType Raw -> MHSigF (AnnotT Raw) r
deriving instance (Show r, Show (TFix t MHSigF)) => Show (MHSigF t r)
deriving instance (Eq r, Eq (TFix t MHSigF)) => Eq (MHSigF t r)
type MHSig a = AnnotTFix a MHSigF
pattern Sig x cty a = Fx (AnnF (MkSig x cty, a))
instance HasId (MHSig t) where getId (Sig x _ _) = x
data MHClsF :: ((* -> *) -> (* -> *)) -> * -> * where
MkMHCls :: Id -> Clause Raw -> MHClsF (AnnotT Raw) r
deriving instance (Show r, Show (TFix t MHClsF)) => Show (MHClsF t r)
deriving instance (Eq r, Eq (TFix t MHClsF)) => Eq (MHClsF t r)
type MHCls a = AnnotTFix a MHClsF
pattern MHCls x cls a = Fx (AnnF (MkMHCls x cls, a))
instance HasId (MHCls t) where getId (MHCls x _ _) = x
{---------------}
{- Parts of the grammar specific to the refined syntax. -}
-- FIXME: currently all top-level bindings are mutually
-- recursive. This setup will break if we add non-recursive value
-- bindings.
--
-- An obvious design is to group mutually recursive bindings using
-- letrec, as specified in the paper.
--
-- Data and interface definitions can continue to be globally mutually
-- recursive as they do not depend on values.
-- a recursive multihandler definition
data MHDefF :: ((* -> *) -> (* -> *)) -> * -> * where
MkDef :: Id -> TFix t CTypeF -> [TFix t ClauseF] -> MHDefF t r
deriving instance (Show r,
Show (TFix t CTypeF),
Show (TFix t ClauseF),
Show (TFix t MHDefF)) => Show (MHDefF t r)
deriving instance (Eq r,
Eq (TFix t CTypeF),
Eq (TFix t ClauseF),
Eq (TFix t MHDefF)) => Eq (MHDefF t r)
type MHDef a = AnnotTFix a MHDefF
pattern Def x cty clss a = Fx (AnnF (MkDef x cty clss, a))
instance HasId (MHDef t) where getId (Def x _ _ _) = x
{- MH here = 'operator' in the paper. Operator here doesn't have a name
in the paper. -}
data OperatorF :: ((* -> *) -> (* -> *)) -> * -> * where
MkMono :: Id -> OperatorF (AnnotT Typed) r -- monotypic (just variable)
MkPoly :: Id -> OperatorF (AnnotT Typed) r -- polytypic (handler expecting arguments, could also be 0 args (!))
MkVarId :: Id -> OperatorF t r
MkCmdId :: Id -> OperatorF t r
deriving instance (Show r, Show (TFix t OperatorF)) => Show (OperatorF t r)
deriving instance (Eq r, Eq (TFix t OperatorF)) => Eq (OperatorF t r)
type Operator a = AnnotTFix a OperatorF
pattern Mono x a = Fx (AnnF (MkMono x, a))
pattern Poly x a = Fx (AnnF (MkPoly x, a))
pattern VarId x a = Fx (AnnF (MkVarId x, a))
pattern CmdId x a = Fx (AnnF (MkCmdId x, a))
data DataConF :: ((* -> *) -> (* -> *)) -> * -> * where
MkDataCon :: Id -> [TFix t TmF] -> DataConF t r
deriving instance (Show r,
Show (TFix t TmF),
Show (TFix t DataConF)) => Show (DataConF t r)
deriving instance (Eq r,
Eq (TFix t TmF),
Eq (TFix t DataConF)) => Eq (DataConF t r)
type DataCon a = AnnotTFix a DataConF
pattern DataCon x tms a = Fx (AnnF (MkDataCon x tms, a))
{---------------}
{- Parts of the grammar independent of the syntax. -}
-- A raw term collects multihandler signatures and clauses separately. A
-- refined top-level term collects multihandler signatures and clauses in
-- one definition.
data TopTmF :: ((* -> *) -> (* -> *)) -> * -> * where
MkDataTm :: TFix t DataTF -> TopTmF t r
MkItfTm :: TFix t ItfF -> TopTmF t r
MkItfAliasTm :: TFix (AnnotT Raw) ItfAliasF -> TopTmF (AnnotT Raw) r
MkSigTm :: TFix (AnnotT Raw) MHSigF -> TopTmF (AnnotT Raw) r
MkClsTm :: TFix (AnnotT Raw) MHClsF -> TopTmF (AnnotT Raw) r
MkDefTm :: NotRaw (t Identity ()) => TFix t MHDefF -> TopTmF t r
-- MkDefTm :: NotRaw t => MHDef t -> TopTmF t r
deriving instance (Show (TFix t DataTF),
Show (TFix t ItfF),
Show (TFix t ItfAliasF),
Show (TFix (AnnotT Raw) MHSigF),
Show (TFix (AnnotT Raw) MHClsF),
Show (TFix t MHDefF),
Show r, Show (TFix t TopTmF)) => Show (TopTmF t r)
deriving instance (Eq (TFix t DataTF),
Eq (TFix t ItfF),
Eq (TFix t ItfAliasF),
Eq (TFix (AnnotT Raw) MHSigF),
Eq (TFix (AnnotT Raw) MHClsF),
Eq (TFix t MHDefF),
Eq r, Eq (TFix t TopTmF)) => Eq (TopTmF t r)
type TopTm a = AnnotTFix a TopTmF
pattern DataTm dt a = Fx (AnnF (MkDataTm dt, a))
pattern ItfTm itf a = Fx (AnnF (MkItfTm itf, a))
pattern ItfAliasTm itfAl a = Fx (AnnF (MkItfAliasTm itfAl, a))
pattern SigTm sig a = Fx (AnnF (MkSigTm sig, a))
pattern ClsTm cls a = Fx (AnnF (MkClsTm cls, a))
pattern DefTm def a = Fx (AnnF (MkDefTm def, a))
-- TODO: LC: Automatic generation of the following? Should be possible
-- somehow
instance HasId (TopTm t) where getId (DataTm dt _) = getId dt
getId (ItfTm itf _) = getId itf
getId (ItfAliasTm itfAl _) = getId itfAl
getId (SigTm sig _) = getId sig
getId (ClsTm cls _) = getId cls
getId (DefTm def _) = getId def
data UseF :: ((* -> *) -> (* -> *)) -> * -> * where
MkRawId :: Id -> UseF (AnnotT Raw) r
MkRawComb :: r -> [TFix (AnnotT Raw) TmF] -> UseF (AnnotT Raw) r
MkOp :: NotRaw (t Identity ()) => TFix t OperatorF -> UseF t r
MkApp :: NotRaw (t Identity ()) => r -> [TFix t TmF] -> UseF t r
MkAdapted :: [TFix t AdaptorF] -> r -> UseF t r
deriving instance (Show (TFix t OperatorF),
Show (TFix t TmF),
Show (TFix t ItfMapF),
Show (TFix t AdaptorF),
Show r, Show (TFix t UseF)) => Show (UseF t r)
deriving instance (Eq (TFix t OperatorF),
Eq (TFix t TmF),
Eq (TFix t ItfMapF),
Eq (TFix t AdaptorF),
Eq r, Eq (TFix t UseF)) => Eq (UseF t r)
type Use a = AnnotTFix a UseF
pattern RawId x a = Fx (AnnF (MkRawId x, a))
pattern RawComb f xs a = Fx (AnnF (MkRawComb f xs, a))
pattern Op op a = Fx (AnnF (MkOp op, a))
pattern App f xs a = Fx (AnnF (MkApp f xs, a))
pattern Adapted rs tm a = Fx (AnnF (MkAdapted rs tm, a))
-- Tm here = 'construction' in the paper
data TmF :: ((* -> *) -> (* -> *)) -> * -> * where
MkSC :: TFix t SCompF -> TmF t r
MkLet :: Id -> r -> r -> TmF (AnnotT Raw) r
MkStr :: String -> TmF t r
MkInt :: Int -> TmF t r
MkChar :: Char -> TmF t r
MkList :: [r] -> TmF (AnnotT Raw) r
MkTmSeq :: r -> r -> TmF t r
MkUse :: TFix t UseF -> TmF t r
MkDCon :: NotRaw (t Identity ()) => TFix t DataConF -> TmF t r
deriving instance (Show (TFix t SCompF),
Show (TFix t UseF),
Show (TFix t DataConF),
Show r, Show (TFix t TmF)) => Show (TmF t r)
deriving instance (Eq (TFix t SCompF),
Eq (TFix t UseF),
Eq (TFix t DataConF),
Eq r, Eq (TFix t TmF)) => Eq (TmF t r)
type Tm a = AnnotTFix a TmF
pattern SC sc a = Fx (AnnF (MkSC sc, a))
pattern Let x tm1 tm2 a = Fx (AnnF (MkLet x tm1 tm2, a))
pattern StrTm str a = Fx (AnnF (MkStr str, a))
pattern IntTm n a = Fx (AnnF (MkInt n, a))
pattern CharTm c a = Fx (AnnF (MkChar c, a))
pattern ListTm xs a = Fx (AnnF (MkList xs, a))
pattern TmSeq tm1 tm2 a = Fx (AnnF (MkTmSeq tm1 tm2, a))
pattern Use u a = Fx (AnnF (MkUse u, a))
pattern DCon dc a = Fx (AnnF (MkDCon dc, a))
-- A clause for a multihandler definition
data ClauseF :: ((* -> *) -> (* -> *)) -> * -> * where
MkCls :: [TFix t PatternF] -> TFix t TmF -> ClauseF t r
deriving instance (Show (TFix t PatternF),
Show (TFix t TmF),
Show r, Show (TFix t ClauseF)) => Show (ClauseF t r)
deriving instance (Eq (TFix t PatternF),
Eq (TFix t TmF),
Eq r, Eq (TFix t ClauseF)) => Eq (ClauseF t r)
type Clause a = AnnotTFix a ClauseF
pattern Cls ps t a = Fx (AnnF (MkCls ps t, a))
data SCompF :: ((* -> *) -> (* -> *)) -> * -> * where
MkSComp :: [TFix t ClauseF] -> SCompF t r
deriving instance (Show (TFix t ClauseF),
Show r, Show (TFix t SCompF)) => Show (SCompF t r)
deriving instance (Eq (TFix t ClauseF),
Eq r, Eq (TFix t SCompF)) => Eq (SCompF t r)
type SComp a = AnnotTFix a SCompF
pattern SComp cls a = Fx (AnnF (MkSComp cls, a))
data Kind = VT -- value type
| ET -- effect type
deriving (Show, Eq)
data DataTF :: ((* -> *) -> (* -> *)) -> * -> * where
MkDT :: Id -> [(Id, Kind)] -> [TFix t CtrF] -> DataTF t r
deriving instance (Show (TFix t CtrF),
Show r, Show (TFix t DataTF)) => Show (DataTF t r)
deriving instance (Eq (TFix t CtrF),
Eq r, Eq (TFix t DataTF)) => Eq (DataTF t r)
type DataT a = AnnotTFix a DataTF
pattern DT x ps ctrs a = Fx (AnnF (MkDT x ps ctrs, a))
instance HasId (DataT t) where getId (DT x _ _ _) = x
data ItfF :: ((* -> *) -> (* -> *)) -> * -> * where
MkItf :: Id -> [(Id, Kind)] -> [TFix t CmdF] -> ItfF t r
deriving instance (Show (TFix t CmdF),
Show r, Show (TFix t ItfF)) => Show (ItfF t r)
deriving instance (Eq (TFix t CmdF),
Eq r, Eq (TFix t ItfF)) => Eq (ItfF t r)
type Itf a = AnnotTFix a ItfF
pattern Itf x ps cmds a = Fx (AnnF (MkItf x ps cmds, a))
instance HasId (Itf t) where getId (Itf x _ _ _) = x
data ItfAliasF :: ((* -> *) -> (* -> *)) -> * -> * where
MkItfAlias :: Id -> [(Id, Kind)] -> TFix t ItfMapF -> ItfAliasF t r
deriving instance (Show (TFix t ItfMapF),
Show r, Show (TFix t ItfAliasF)) => Show (ItfAliasF t r)
deriving instance (Eq (TFix t ItfMapF),
Eq r, Eq (TFix t ItfAliasF)) => Eq (ItfAliasF t r)
type ItfAlias a = AnnotTFix a ItfAliasF
pattern ItfAlias x ps itfMap a = Fx (AnnF (MkItfAlias x ps itfMap, a))
instance HasId (ItfAlias t) where getId (ItfAlias x _ _ _) = x
data CtrF :: ((* -> *) -> (* -> *)) -> * -> * where
MkCtr :: Id -> [TFix t VTypeF] -> CtrF t r
deriving instance (Show (TFix t VTypeF),
Show r, Show (TFix t CtrF)) => Show (CtrF t r)
deriving instance (Eq (TFix t VTypeF),
Eq r, Eq (TFix t CtrF)) => Eq (CtrF t r)
type Ctr a = AnnotTFix a CtrF
pattern Ctr x tys a = Fx (AnnF (MkCtr x tys, a))
data CmdF :: ((* -> *) -> (* -> *)) -> * -> * where
MkCmd :: Id -> [(Id, Kind)] -> [TFix t VTypeF] -> TFix t VTypeF ->
CmdF t r
deriving instance (Show (TFix t VTypeF),
Show r, Show (TFix t CmdF)) => Show (CmdF t r)
deriving instance (Eq (TFix t VTypeF),
Eq r, Eq (TFix t CmdF)) => Eq (CmdF t r)
-- id ty vars arg tys result ty
type Cmd a = AnnotTFix a CmdF
pattern Cmd x ps tys ty a = Fx (AnnF (MkCmd x ps tys ty, a))
data PatternF :: ((* -> *) -> (* -> *)) -> * -> * where
MkVPat :: TFix t ValuePatF -> PatternF t r
MkCmdPat :: Id -> Int -> [TFix t ValuePatF] -> Id -> PatternF t r
MkThkPat :: Id -> PatternF t r
deriving instance (Show (TFix t ValuePatF),
Show r, Show (TFix t PatternF)) => Show (PatternF t r)
deriving instance (Eq (TFix t ValuePatF),
Eq r, Eq (TFix t PatternF)) => Eq (PatternF t r)
type Pattern a = AnnotTFix a PatternF
pattern VPat vp a = Fx (AnnF (MkVPat vp, a))
pattern CmdPat x n vps k a = Fx (AnnF (MkCmdPat x n vps k, a))
pattern ThkPat x a = Fx (AnnF (MkThkPat x, a))
-- TODO: should we compile away string patterns into list of char patterns?
-- Takes tag "t" (e.g. Refined),
-- recursor "r"
data ValuePatF :: ((* -> *) -> (* -> *)) -> * -> * where
MkVarPat :: Id -> ValuePatF t r
MkDataPat :: Id -> [r] -> ValuePatF t r
MkIntPat :: Int -> ValuePatF t r
MkCharPat :: Char -> ValuePatF t r
MkStrPat :: String -> ValuePatF t r
MkConsPat :: r -> r -> ValuePatF (AnnotT Raw) r
MkListPat :: [r] -> ValuePatF (AnnotT Raw) r
deriving instance (Show r, Show (TFix t ValuePatF)) => Show (ValuePatF t r)
deriving instance (Eq r, Eq (TFix t ValuePatF)) => Eq (ValuePatF t r)
type ValuePat a = AnnotTFix a ValuePatF
pattern VarPat x a = Fx (AnnF (MkVarPat x, a))
pattern DataPat x vps a = Fx (AnnF (MkDataPat x vps, a))
pattern IntPat n a = Fx (AnnF (MkIntPat n, a))
pattern CharPat c a = Fx (AnnF (MkCharPat c, a))
pattern StrPat str a = Fx (AnnF (MkStrPat str, a))
pattern ConsPat p1 p2 a = Fx (AnnF (MkConsPat p1 p2, a))
pattern ListPat ps a = Fx (AnnF (MkListPat ps, a))
-- Type hierarchy
data CTypeF :: ((* -> *) -> (* -> *)) -> * -> * where
MkCType :: [TFix t PortF] -> TFix t PegF -> CTypeF t r -- computation types
deriving instance (Show (TFix t PortF),
Show (TFix t PegF),
Show r, Show (TFix t CTypeF)) => Show (CTypeF t r)
deriving instance (Eq (TFix t PortF),
Eq (TFix t PegF),
Eq r, Eq (TFix t CTypeF)) => Eq (CTypeF t r)
type CType a = AnnotTFix a CTypeF
pattern CType ports peg a = Fx (AnnF (MkCType ports peg, a))
data PortF :: ((* -> *) -> (* -> *)) -> * -> * where
MkPort :: [TFix t AdjustmentF] -> TFix t VTypeF -> PortF t r -- ports
deriving instance (Show (TFix t AdjustmentF),
Show (TFix t VTypeF),
Show r, Show (TFix t PortF)) => Show (PortF t r)
deriving instance (Eq (TFix t AdjustmentF),
Eq (TFix t VTypeF),
Eq r, Eq (TFix t PortF)) => Eq (PortF t r)
type Port a = AnnotTFix a PortF
pattern Port adjs ty a = Fx (AnnF (MkPort adjs ty, a))
data PegF :: ((* -> *) -> (* -> *)) -> * -> * where
MkPeg :: TFix t AbF -> TFix t VTypeF -> PegF t r -- pegs
deriving instance (Show (TFix t AbF),
Show (TFix t VTypeF),
Show r, Show (TFix t PegF)) => Show (PegF t r)
deriving instance (Eq (TFix t AbF),
Eq (TFix t VTypeF),
Eq r, Eq (TFix t PegF)) => Eq (PegF t r)
type Peg a = AnnotTFix a PegF
pattern Peg ab ty a = Fx (AnnF (MkPeg ab ty, a))
data VTypeF :: ((* -> *) -> (* -> *)) -> * -> * where -- value types
MkDTTy :: Id -> [TFix t TyArgF] -> VTypeF t r -- data types (instant. type constr.) may be refined to MkTVar
MkSCTy :: TFix t CTypeF -> VTypeF t r -- suspended computation types
MkTVar :: NotDesugared (t Identity ()) => Id -> VTypeF t r -- may be refined to MkDTTy
MkRTVar :: Id -> VTypeF (AnnotT Desugared) r -- rigid type variable (bound)
MkFTVar :: Id -> VTypeF (AnnotT Desugared) r -- flexible type variable (free)
MkStringTy :: NotDesugared (t Identity ()) => VTypeF t r -- string type
MkIntTy :: VTypeF t r -- int type
MkCharTy :: VTypeF t r -- char type
deriving instance (Show (TFix t TyArgF),
Show (TFix t CTypeF),
Show r, Show (TFix t VTypeF)) => Show (VTypeF t r)
deriving instance (Eq (TFix t TyArgF),
Eq (TFix t CTypeF),
Eq r, Eq (TFix t VTypeF)) => Eq (VTypeF t r)
type VType a = AnnotTFix a VTypeF
pattern DTTy x tyArgs a = Fx (AnnF (MkDTTy x tyArgs, a))
pattern SCTy cty a = Fx (AnnF (MkSCTy cty, a))
pattern TVar x a = Fx (AnnF (MkTVar x, a))
pattern RTVar x a = Fx (AnnF (MkRTVar x, a))
pattern FTVar x a = Fx (AnnF (MkFTVar x, a))
pattern StringTy a = Fx (AnnF (MkStringTy, a))
pattern IntTy a = Fx (AnnF (MkIntTy, a))
pattern CharTy a = Fx (AnnF (MkCharTy, a))
-- Interface-id -> list of bwd-list of ty arg's (each entry an instantiation)
data ItfMapF :: ((* -> *) -> (* -> *)) -> * -> * where
MkItfMap :: M.Map Id (Bwd [TFix t TyArgF]) -> ItfMapF t r
deriving instance (Show (TFix t TyArgF),
Show r, Show (TFix t ItfMapF)) => Show (ItfMapF t r)
deriving instance (Eq (TFix t TyArgF),
Eq r, Eq (TFix t ItfMapF)) => Eq (ItfMapF t r)
type ItfMap a = AnnotTFix a ItfMapF
pattern ItfMap m a = Fx (AnnF (MkItfMap m, a))
-- Adjustments
data AdjustmentF :: ((* -> *) -> (* -> *)) -> * -> * where
MkConsAdj :: Id -> [TFix t TyArgF] -> AdjustmentF t r -- interface-id, list of ty arg's
MkAdaptorAdj :: TFix t AdaptorF -> AdjustmentF t r
deriving instance (Show (TFix t TyArgF),
Show (TFix t AdaptorF),
Show r, Show (TFix t AdjustmentF)) => Show (AdjustmentF t r)
deriving instance (Eq (TFix t TyArgF),
Eq (TFix t AdaptorF),
Eq r, Eq (TFix t AdjustmentF)) => Eq (AdjustmentF t r)
type Adjustment a = AnnotTFix a AdjustmentF
pattern ConsAdj x ts a = Fx (AnnF (MkConsAdj x ts, a))
pattern AdaptorAdj adp a = Fx (AnnF (MkAdaptorAdj adp, a))
-- Abilities
data AbF :: ((* -> *) -> (* -> *)) -> * -> * where
MkAb :: TFix t AbModF -> TFix t ItfMapF -> AbF t r -- interface-id -> list of ty arg's
deriving instance (Show (TFix t AbModF),
Show (TFix t ItfMapF),
Show r, Show (TFix t AbF)) => Show (AbF t r)
deriving instance (Eq (TFix t AbModF),
Eq (TFix t ItfMapF),
Eq r, Eq (TFix t AbF)) => Eq (AbF t r)
type Ab a = AnnotTFix a AbF
pattern Ab abMod itfMap a = Fx (AnnF (MkAb abMod itfMap, a))
-- Ability modes
data AbModF :: ((* -> *) -> (* -> *)) -> * -> * where
MkEmpAb :: AbModF t r -- empty (closed ability)
MkAbVar :: NotDesugared (t Identity ()) => Id -> AbModF t r -- non-desugared effect variable
MkAbRVar :: Id -> AbModF (AnnotT Desugared) r -- rigid eff var (open ability)
MkAbFVar :: Id -> AbModF (AnnotT Desugared) r -- flexible eff var (open ability)
deriving instance (Show r, Show (TFix t AbModF)) => Show (AbModF t r)
deriving instance (Eq r, Eq (TFix t AbModF)) => Eq (AbModF t r)
type AbMod a = AnnotTFix a AbModF
pattern EmpAb a = Fx (AnnF (MkEmpAb, a))
pattern AbVar x a = Fx (AnnF (MkAbVar x, a))
pattern AbRVar x a = Fx (AnnF (MkAbRVar x, a))
pattern AbFVar x a = Fx (AnnF (MkAbFVar x, a))
data TyArgF :: ((* -> *) -> (* -> *)) -> * -> * where
MkVArg :: TFix t VTypeF -> TyArgF t r
MkEArg :: TFix t AbF -> TyArgF t r
deriving instance (Show (TFix t VTypeF),
Show (TFix t AbF),
Show r, Show (TFix t TyArgF)) => Show (TyArgF t r)
deriving instance (Eq (TFix t VTypeF),
Eq (TFix t AbF),
Eq r, Eq (TFix t TyArgF)) => Eq (TyArgF t r)
type TyArg a = AnnotTFix a TyArgF
pattern VArg ty a = Fx (AnnF (MkVArg ty, a))
pattern EArg ab a = Fx (AnnF (MkEArg ab, a))
-- TODO: LC: Make distinction between MkAdp and MkCompilableAdp on
-- type-level (GADT)
data AdaptorF :: ((* -> *) -> (* -> *)) -> * -> * where
MkRawAdp :: Id -> Id -> [Id] -> [Id] -> AdaptorF (AnnotT Raw) r -- e.g. I(s y x -> y x) (s is first arg, [y x] is second arg, [y x] is third arg)
MkAdp :: Id -> Maybe Int -> [Int] -> AdaptorF t r -- adapt an interface `x` in an ability from right to left according to `ns` and (possibly - according to Maybe) attach all instances from `m` on
MkCompilableAdp :: Id -> Int -> [Int] -> AdaptorF t r -- adapt an interface `x` in an ability that has exactly `n` instances of it from right to left according to `ns`
deriving instance (Show r, Show (TFix t AdaptorF)) => Show (AdaptorF t r)
deriving instance (Eq r, Eq (TFix t AdaptorF)) => Eq (AdaptorF t r)
type Adaptor a = AnnotTFix a AdaptorF
pattern RawAdp x liat left right a = Fx (AnnF (MkRawAdp x liat left right, a))
pattern Adp x mm ns a = Fx (AnnF (MkAdp x mm ns, a))
pattern CompilableAdp x m ns a = Fx (AnnF (MkCompilableAdp x m ns, a))
desugaredStrTy :: Desugared -> VType Desugared
desugaredStrTy a = DTTy "List" [VArg (CharTy a) a] a
getCmds :: Itf t -> [Cmd t]
getCmds (Itf _ _ xs _) = xs
collectINames :: [Itf t] -> [Id]
collectINames = map (\case (Itf itf _ _ _) -> itf)
getCtrs :: DataT t -> [Ctr t]
getCtrs (DT _ _ xs _) = xs
collectDTNames :: [DataT t] -> [Id]
collectDTNames = map (\case (DT dt _ _ _) -> dt)
-- Convert ability to a list of interface names and effect variables
{-
abToList :: Ab a -> [Id]
abToList MkEmpAb = []
abToList (MkAbVar id) = [id]
abToList MkOpenAb = []
abToList (MkAbPlus ab id _) = id : abToList ab
-- Substitute the ability for the distinguished effect variable in the type.
substOpenAb :: Ab a -> VType a -> VType a
substOpenAb ab (MkDTTy id abs xs) =
MkDTTy id (map (substOpenAbAb ab) abs) (map (substOpenAb ab) xs)
substOpenAb ab (MkSCTy cty) = MkSCTy $ substOpenAbCType ab cty
substOpenAb _ ty = ty
substOpenAbAb :: Ab a -> Ab a -> Ab a
substOpenAbAb ab MkEmpAb = MkEmpAb
substOpenAbAb ab MkOpenAb = ab
substOpenAbAb ab (MkAbVar x) = MkAbVar x
substOpenAbAb ab (MkAbPlus ab' x ts) =
MkAbPlus (substOpenAbAb ab' ab) x (map (substOpenAb ab) ts)
substOpenAbAdj :: Ab a -> Adj a -> Adj a
substOpenAbAdj ab MkIdAdj = MkIdAdj
substOpenAbAdj ab (MkAdjPlus adj itf xs) =
MkAdjPlus (substOpenAbAdj ab adj) itf (map (substOpenAb ab) xs)
substOpenAbCType :: Ab a -> CType a -> CType a
substOpenAbCType ab (MkCType ps q) =
MkCType (map (substOpenAbPort ab) ps) (substOpenAbPeg ab q)
substOpenAbPeg :: Ab a -> Peg a -> Peg a
substOpenAbPeg ab (MkPeg ab' ty) =
MkPeg (substOpenAbAb ab ab') (substOpenAb ab ty)
substOpenAbPort :: Ab a -> Port a -> Port a
substOpenAbPort ab (MkPort adj ty) =
MkPort (substOpenAbAdj ab adj) (substOpenAb ab ty)
-}
getOpName :: Operator t -> Id
getOpName (Mono x _) = x
getOpName (Poly x _) = x
getOpName (VarId x _) = x
getOpName (CmdId x _) = x
-- transform type variable (+ its kind) to a raw tye variable argument
-- (use during refinement of itf maps)
tyVar2rawTyVarArg :: (Id, Kind) -> TyArg Raw
tyVar2rawTyVarArg (id, VT) = VArg (TVar id (Raw Generated)) (Raw Generated)
tyVar2rawTyVarArg (id, ET) = EArg (liftAbMod (AbVar id (Raw Generated)))
(Raw Generated)
-- transform type variable (+ its kind) to a rigid tye variable argument
-- (prepare for later unification)
tyVar2rigTyVarArg :: (Id, Kind) -> TyArg Desugared
tyVar2rigTyVarArg (id, VT) = VArg (RTVar id (Desugared Generated))
(Desugared Generated)
tyVar2rigTyVarArg (id, ET) = EArg (liftAbMod (AbRVar id
(Desugared Generated)))
(Desugared Generated)
liftAbMod :: AbMod t -> Ab t
liftAbMod abMod = Ab abMod (ItfMap M.empty (attr abMod)) (attr abMod)
-- Only to be applied to identifiers representing rigid or flexible
-- metavariables (type or effect).
trimVar :: Id -> Id
trimVar = takeWhile (/= '$')
{- Operations on interface maps -}
-- For each interface, the instances are concatenated
-- e.g. [State Bool, State Int] + [State String, State Char] =
-- [State Bool, State Int, State String, State Char]
plusItfMap :: ItfMap t -> ItfMap t -> ItfMap t
plusItfMap (ItfMap m a) (ItfMap m' _) = foldl plusItfMap' (ItfMap m a) (M.toList m')
where plusItfMap' :: ItfMap t -> (Id, Bwd [TyArg t]) -> ItfMap t
plusItfMap' (ItfMap m'' a'') (x, instants) =
if M.member x m'' then ItfMap (M.adjust (\instants' -> instants' <>< bwd2fwd instants) x m'') a''
else ItfMap (M.insert x instants m'') a''
-- eg. [State Bool,State Int] + State Char = [State Bool,State Int,State Char]
addInstanceToItfMap :: ItfMap Raw -> (Id, [TyArg Raw]) -> ItfMap Raw
addInstanceToItfMap (ItfMap m a) (x, args) =
if M.member x m then ItfMap (M.adjust (:< args) x m) a
else ItfMap (M.insert x (BEmp :< args) m) a
-- Given m1 and m2, return
-- 1) All interfaces that occur in m1 *and* m2
-- 2) Of those interface, take only the longest suffix of common length,
-- with instances from m1
intersectItfMap :: ItfMap t -> ItfMap t -> ItfMap t
intersectItfMap (ItfMap m1 a) (ItfMap m2 _) = ItfMap m'' a
where m' = M.intersectionWith (\args args' -> takeBwd (min (length args) (length args')) args) m1 m2
m'' = M.filter (not . null) m'
-- Given m1 and m2, cut off entry suffixes of m1 of length determined by m2's
-- entries' lengths
cutItfMapSuffix :: ItfMap t -> ItfMap t -> ItfMap t
cutItfMapSuffix (ItfMap m1 a) (ItfMap m2 _) = ItfMap m'' a
where m' = M.differenceWith (\args args' -> Just $ dropBwd (length args') args) m1 m2
m'' = M.filter (not . null) m'
stripInactiveOffItfMap :: ItfMap t -> ItfMap t
stripInactiveOffItfMap (ItfMap m a) = ItfMap m' a
where m' = M.map (\case BEmp -> error "invariant broken"
(_ :< x) -> BEmp :< x) m
isItfMapSuffixOf :: Eq t => ItfMap t -> ItfMap t -> Bool
isItfMapSuffixOf m1 m2 = (m2 `cutItfMapSuffix` m1) `plusItfMap` m1 == m2
emptyItfMap :: t -> ItfMap t
emptyItfMap = ItfMap M.empty
isItfMapEmpty :: ItfMap t -> Bool
isItfMapEmpty (ItfMap m _) = M.null m
-- Normal form of lists of adjustments
-- M.Map Id (Bwd [TyArg Desugared]: I -> Enrichments for I (instances which are
-- handled here)
-- M.Map Id (Renaming, Int): I -> Total renaming for I, number of enrichments for I
adjsNormalForm :: [Adjustment Desugared] ->
(M.Map Id (Bwd [TyArg Desugared]), M.Map Id Renaming)
adjsNormalForm = foldl (flip addAdjNormalForm) (M.empty, M.empty)
addAdjNormalForm :: Adjustment Desugared ->
(M.Map Id (Bwd [TyArg Desugared]), M.Map Id Renaming) ->
(M.Map Id (Bwd [TyArg Desugared]), M.Map Id Renaming)
addAdjNormalForm (ConsAdj x ts a) (insts, adps) = (
adjustWithDefault (:< ts) x BEmp insts,
adjustWithDefault (\(rs, r) ->
(renToNormalForm (0:(map (+1) rs), r+1))) x renId adps)
addAdjNormalForm (AdaptorAdj adp@(CompilableAdp x m ns _) a) (insts, adps) = (
insts,
adjustWithDefault (\r ->
(renToNormalForm $ renCompose (adpToRen adp) r)) x renId adps)
-- TODO: LC: double-check that the last line is correct
-- helpers
adjustWithDefault :: Ord k => (a -> a) -> k -> a -> M.Map k a -> M.Map k a
adjustWithDefault f k def m =
let g = \x -> case x of Nothing -> Just def
_ -> x
in
M.adjust f k (M.alter g k m)
adpToRen :: Adaptor Desugared -> Renaming
adpToRen (CompilableAdp x m ns _) = (reverse ns, m)