Skip to content

Latest commit

 

History

History
56 lines (47 loc) · 1.7 KB

README.md

File metadata and controls

56 lines (47 loc) · 1.7 KB

GoogleNet

Download:

Model size: 28 MB

Description

GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014.

Differences:

  • not training with the relighting data-augmentation;
  • not training with the scale or aspect-ratio data-augmentation;
  • uses "xavier" to initialize the weights instead of "gaussian";

Paper

Going deeper with convolutions

Dataset

ILSVRC2014

Source

Caffe BVLC GoogLeNet ==> Caffe2 GoogLeNet ==> ONNX GoogLeNet

Model input and output

Input

data_0: float[1, 3, 224, 224]

Output

softmaxout_1: float[1, 1000]

Pre-processing steps

Post-processing steps

Sample test data

random generated sampe test data:

  • test_data_set_0
  • test_data_set_1
  • test_data_set_2
  • test_data_set_3
  • test_data_set_4
  • test_data_set_5

Results/accuracy on test set

This bundled model obtains a top-1 accuracy 68.7% (31.3% error) and a top-5 accuracy 88.9% (11.1% error) on the validation set, using just the center crop. (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.)

License

BSD-3