You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The overall pipeline looks the same except some minor details:
# Library import
from miscnn.processing.preprocessor import Preprocessor
# Create and configure the Preprocessor class
pp = Preprocessor(data_io, data_aug=data_aug, batch_size=2, subfunctions=subfunctions, prepare_subfunctions=True,
prepare_batches=False, analysis="patchwise-crop", patch_shape=(80, 160, 160),
use_multiprocessing=True)
# Adjust the patch overlap for predictions
pp.patchwise_overlap = (40, 80, 80)
pp.patchwise_skip_blanks = True
...
# Exclude suspious samples from data set
del sample_list[133]
del sample_list[125]
del sample_list[68]
del sample_list[37]
del sample_list[23]
del sample_list[15]
# Create the training/validation sample ID list
import numpy as np
np.random.seed(123)
sample_list = np.random.permutation(sample_list).tolist()
validation_samples = sorted(sample_list[:50])
training_samples = sorted(sample_list[50:])
model.evaluate(training_samples, validation_samples, epochs=epochs, callbacks=[cb_lr, cb_es, cb_mc])
Data is downloaded following the instruction on https://github.com/neheller/kits19 but in the end I get this error:
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-10-88f8eac878c5> in <module>
----> 1 model.evaluate(training_samples, validation_samples, epochs=epochs, callbacks=[cb_lr, cb_es, cb_mc])
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\neural_network\model.py in evaluate(self, training_samples, validation_samples, epochs, iterations, callbacks, class_weight)
264 shuffle=self.shuffle_batches)
265 # Run training & validation process with the Keras fit
--> 266 history = self.model.fit(dataGen_training,
267 validation_data=dataGen_validation,
268 callbacks=callbacks,
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1047 training_utils.RespectCompiledTrainableState(self):
1048 # Creates a `tf.data.Dataset` and handles batch and epoch iteration.
-> 1049 data_handler = data_adapter.DataHandler(
1050 x=x,
1051 y=y,
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\data_adapter.py in __init__(self, x, y, sample_weight, batch_size, steps_per_epoch, initial_epoch, epochs, shuffle, class_weight, max_queue_size, workers, use_multiprocessing, model, steps_per_execution)
1103
1104 adapter_cls = select_data_adapter(x, y)
-> 1105 self._adapter = adapter_cls(
1106 x,
1107 y,
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\data_adapter.py in __init__(self, x, y, sample_weights, shuffle, workers, use_multiprocessing, max_queue_size, model, **kwargs)
907 self._keras_sequence = x
908 self._enqueuer = None
--> 909 super(KerasSequenceAdapter, self).__init__(
910 x,
911 shuffle=False, # Shuffle is handed in the _make_callable override.
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\data_adapter.py in __init__(self, x, y, sample_weights, workers, use_multiprocessing, max_queue_size, model, **kwargs)
784 # Since we have to know the dtype of the python generator when we build the
785 # dataset, we have to look at a batch to infer the structure.
--> 786 peek, x = self._peek_and_restore(x)
787 peek = self._standardize_batch(peek)
788 peek = _process_tensorlike(peek)
~\anaconda3\envs\cfu_segmentation\lib\site-packages\tensorflow\python\keras\engine\data_adapter.py in _peek_and_restore(x)
918 @staticmethod
919 def _peek_and_restore(x):
--> 920 return x[0], x
921
922 def _handle_multiprocessing(self, x, workers, use_multiprocessing,
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\neural_network\data_generator.py in __getitem__(self, idx)
63 # Load a batch by generating it or by loading an already prepared
64 if self.preprocessor.prepare_batches : batch = self.load_batch(idx)
---> 65 else : batch = self.generate_batch(idx)
66 # Return the batch containing only an image or an image and segmentation
67 if self.training:
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\neural_network\data_generator.py in generate_batch(self, idx)
146 self.sample_list.extend(samples)
147 # create a new batch
--> 148 batches = self.preprocessor.run(samples, self.training,
149 self.validation)
150 # Create threading lock to avoid parallel access
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\processing\preprocessor.py in run(self, indices_list, training, validation)
131 sf.preprocessing(sample, training=training)
132 # Load sample from file with already processed subfunctions
--> 133 else : sample = self.data_io.sample_loader(index, backup=True)
134 # Cache sample object for prediction
135 if not training : self.cache[index] = sample
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\data_loading\data_io.py in sample_loader(self, index, load_seg, load_pred, backup)
84 def sample_loader(self, index, load_seg=True, load_pred=False, backup=False):
85 # If sample is a backup -> load it from pickle
---> 86 if backup : return self.load_sample_pickle(index)
87 # Load the image with the I/O interface
88 image, extended = self.interface.load_image(index)
c:\users\students\desktop\bacteria_cfu\code\miscnn-master\miscnn\data_loading\data_io.py in load_sample_pickle(self, index)
192 sample_path = os.path.join(self.batch_path, str(self.seed) + "." + \
193 index + ".pickle")
--> 194 with open(sample_path,'rb') as reader:
195 sample = pickle.load(reader)
196 return sample
FileNotFoundError: [Errno 2] No such file or directory: 'batches\\17488990.case_00058.pickle'
The text was updated successfully, but these errors were encountered:
The overall pipeline looks the same except some minor details:
Data is downloaded following the instruction on
https://github.com/neheller/kits19
but in the end I get this error:The text was updated successfully, but these errors were encountered: