-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
346 lines (270 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import os
import hydra
from omegaconf import DictConfig, OmegaConf
from tqdm import tqdm
from copy import deepcopy
from lpipsPyTorch import lpips
from random import randint
from gaussian_renderer import render, network_gui
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
from utils.loss_utils import l1_loss, ssim
from utils.image_utils import psnr
from utils.wandb_utils import init_wandb, save_hist, wandb
from training_viewer import TrainingViewer
from compression.compression_exp import run_compressions, run_decompressions
from compression.decompress import decompress_all_to_ply
def training(cfg):
first_iter = 0
if not cfg.run.use_sh:
print("use_sh not set, disabling sorting for spherical harmonics")
cfg.sorting.weights.features_rest = 0
cfg.neighbor_loss.weights.features_rest = 0
for compression in cfg.compression["experiments"]:
for i, att in enumerate(compression["attributes"]):
if att["name"] == "_features_rest":
del compression["attributes"][i]
print(f"Starting training on dataset {cfg.dataset.source_path}")
disable_xyz_log_activation = "disable_xyz_log_activation" in cfg.optimization and cfg.optimization.disable_xyz_log_activation
print(f"{disable_xyz_log_activation=}")
gaussians = GaussianModel(cfg.dataset.sh_degree, disable_xyz_log_activation=disable_xyz_log_activation)
scene = Scene(cfg.dataset, gaussians)
gaussians.training_setup(cfg.optimization)
if cfg.run.start_checkpoint:
(model_params, first_iter) = torch.load(cfg.run.start_checkpoint)
gaussians.restore(model_params, cfg.optimization)
# ----------------------
# SSGS
if cfg.sorting.enabled:
gaussians.prune_to_square_shape()
gaussians.sort_into_grid(cfg.sorting, not cfg.run.no_progress_bar)
debug_viewer = TrainingViewer(debug_view=cfg.local_window_debug_view.view_id)
# ----------------------
bg_color = [1, 1, 1] if cfg.dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
viewpoint_stack = None
ema_loss_for_log = 0.0
if cfg.run.no_progress_bar:
progress_bar = None
else:
progress_bar = tqdm(range(first_iter, cfg.optimization.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, cfg.optimization.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, cfg.pipeline.convert_SHs_python, cfg.pipeline.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, cfg.pipeline, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, cfg.dataset.source_path)
if do_training and ((iteration < int(cfg.optimization.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0 and cfg.run.use_sh:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# Render
if (iteration - 1) == cfg.debug.debug_from:
cfg.pipeline.debug = True
bg = torch.rand((3), device="cuda") if cfg.optimization.random_background else background
render_pkg = render(viewpoint_cam, gaussians, cfg.pipeline, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], \
render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - cfg.optimization.lambda_dssim) * Ll1 + cfg.optimization.lambda_dssim * (1.0 - ssim(image, gt_image))
# ----------------------
# SSGS
if cfg.neighbor_loss.lambda_neighbor > 0:
nb_losses = []
wandb_log = {}
attr_getter_fn = gaussians.get_activated_attr_flat if cfg.neighbor_loss.activated else gaussians.get_attr_flat
weight_sum = sum(cfg.neighbor_loss.weights.values())
for attr_name, attr_weight in cfg.neighbor_loss.weights.items():
if attr_weight > 0:
nb_losses.append(gaussians.neighborloss_2d(attr_getter_fn(attr_name), cfg.neighbor_loss) * attr_weight / weight_sum)
wandb_log[f"neighbor_loss/{attr_name}"] = nb_losses[-1]
nb_loss = cfg.neighbor_loss.lambda_neighbor * sum(nb_losses)
if iteration % cfg.run.log_nb_loss_interval == 0:
wandb.log(wandb_log, step=iteration)
else:
nb_loss = torch.tensor(0.0)
# ----------------------
loss += nb_loss
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if progress_bar is not None:
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == cfg.optimization.iterations:
progress_bar.close()
# Debug view
if cfg.wandb_debug_view.interval != -1 and iteration % cfg.wandb_debug_view.interval == 0:
if cfg.wandb_debug_view.view_enabled:
debug_viewer.training_view_wandb(scene, gaussians, pipe=cfg.pipeline, step=iteration, background=background)
if cfg.wandb_debug_view.save_hist:
save_hist(gaussians, step=iteration)
if cfg.local_window_debug_view.enabled and cfg.local_window_debug_view.interval != -1 and iteration % cfg.local_window_debug_view.interval == 0:
debug_viewer.training_view(scene, gaussians, pipe=cfg.pipeline, background=background)
# Log and save
if iteration % cfg.run.log_training_report_interval == 0:
wandb.log(
{
"loss/l1_loss": Ll1.item(),
"loss/total_loss": loss.item(),
"loss/nb_loss": nb_loss.item(),
"iter_time": iter_start.elapsed_time(iter_end),
"num gaussians": len(gaussians.get_xyz),
},
step=iteration
)
if iteration in cfg.run.test_iterations:
training_report(cfg, iteration, scene, gaussians, (cfg.pipeline, background), log_name="uncompressed")
if (iteration in cfg.run.save_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Compression
if (iteration in cfg.run.compress_iterations):
print("\n[ITER {}] Compressing Gaussians".format(iteration))
compr_path = os.path.join(cfg.dataset.model_path, "compression", f"iteration_{iteration}")
# enable compression of non-sorted gaussians without affecting results
gaussians_to_compress = deepcopy(gaussians)
gaussians_to_compress.prune_to_square_shape()
compr_results = run_compressions(gaussians_to_compress, compr_path, OmegaConf.to_container(cfg.compression))
wandb.log(compr_results, step=iteration)
for compr_name, decompressed_gaussians in run_decompressions(compr_path):
training_report(cfg, iteration, scene, decompressed_gaussians, (cfg.pipeline, background), log_name=f"cmpr_{compr_name}", log_GT=False)
# decompress plys in last compression iteration
if iteration == max(cfg.run.compress_iterations):
decompress_all_to_ply(compr_path)
# Densification
if iteration < cfg.optimization.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter],
radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > cfg.optimization.densify_from_iter and iteration % cfg.optimization.densification_interval == 0:
size_threshold = 20 if iteration > cfg.optimization.opacity_reset_interval else None
gaussians.densify_and_prune(max_grad=cfg.optimization.densify_grad_threshold, min_opacity=cfg.optimization.densify_min_opacity, extent=scene.cameras_extent, max_screen_size=size_threshold)
if iteration > cfg.optimization.densify_from_iter and iteration % cfg.optimization.densification_interval == 0:
# ----------------------
# SSGS
if cfg.sorting.enabled:
gaussians.prune_to_square_shape()
gaussians.sort_into_grid(cfg.sorting, not cfg.run.no_progress_bar)
# ----------------------
if iteration < cfg.optimization.densify_until_iter:
if iteration % cfg.optimization.opacity_reset_interval == 0 or (
cfg.dataset.white_background and iteration == cfg.optimization.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < cfg.optimization.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
if (iteration in cfg.run.checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def training_report(cfg, iteration, scene, gaussians, renderArgs, log_name, log_GT=True):
# Report test and samples of training set
torch.cuda.empty_cache()
validation_configs = (
{
'name': 'test',
'cameras': scene.getTestCameras()
},
{
'name': 'train',
'cameras': [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]
}
)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
lpipss_test = 0.0
wandb_images = []
wandb_gt_images = []
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(render(viewpoint, gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if cfg.wandb_debug_view.view_enabled and idx < 5:
name = config['name'] + "_view_{}/render".format(viewpoint.image_name)
wandb_img = wandb.Image(image[None], caption=name)
wandb_images.append(wandb_img)
name = config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name)
wandb_img = wandb.Image(gt_image[None], caption=name)
wandb_gt_images.append(wandb_img)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
ssim_test += ssim(image, gt_image)
if cfg.run.test_lpips:
lpipss_test += lpips(image, gt_image, net_type='vgg').item()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
lpipss_test /= len(config['cameras'])
print(f"\n[ITER {iteration}] Evaluating {log_name} {config['name']}: L1: {l1_test:.4f} - PSNR: {psnr_test:.4f} - SSIM: {ssim_test:.4f} - LPIPS: {lpipss_test:.4f}")
to_log = {
f"eval_{config['name']}_PSNR/{log_name}": psnr_test,
f"eval_{config['name']}_SSIM/{log_name}": ssim_test,
f"eval_{config['name']}_LPIPS/{log_name}": lpipss_test,
f"eval_{config['name']}_L1/{log_name}": l1_test,
f"eval_{config['name']}_renders/{log_name}": wandb_images,
}
if log_GT:
to_log[f"eval_{config['name']}_gt_img/{log_name}"] = wandb_gt_images
wandb.log(to_log, step=iteration)
torch.cuda.empty_cache()
@hydra.main(version_base=None, config_path='config', config_name='training')
def main(cfg: DictConfig):
# Initialize system state (RNG)
safe_state(cfg.run.quiet)
cfg.run.wandb_url = init_wandb(cfg)
output_dir = hydra.core.hydra_config.HydraConfig.get().runtime.output_dir
if not cfg.dataset.model_path:
cfg.dataset.model_path = output_dir
yaml_config = OmegaConf.to_yaml(cfg)
training_config_yml_path = os.path.join(cfg.dataset.model_path, "training_config.yaml")
with open(training_config_yml_path, 'w') as file:
file.write("# Also available at .hydra/config.yaml\n")
file.write(yaml_config)
cfg_args_path = os.path.join(cfg.dataset.model_path, "cfg_args")
with open(cfg_args_path, "w") as file:
file.write(f"Namespace(model_path='{cfg.dataset.model_path}', source_path='{cfg.dataset.source_path}', images='{cfg.dataset.images}', resolution='{cfg.dataset.resolution}', sh_degree={cfg.dataset.sh_degree}, white_background={cfg.dataset.white_background}, eval={cfg.dataset.eval})")
# Start GUI server, configure and run training
network_gui.init(cfg.gui_server.ip, cfg.gui_server.port)
torch.autograd.set_detect_anomaly(cfg.debug.detect_anomaly)
training(cfg)
# All done
print("\nTraining complete.")
if __name__ == "__main__":
main()