-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch1_linear_regression.py
225 lines (176 loc) · 6.69 KB
/
ch1_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import cm
import seaborn as sns
import statsmodels.formula.api as smf
#@st.cache
def load_data():
df = pd.read_csv("data/Advertising.csv") # read csv file into pandas
return df
def _ols_best(df):
X = df.iloc[:,1].name
y = df.iloc[:,0].name
model = smf.ols(f"{y} ~ {X}", df).fit()
b0,b1 = model.params.values
yhat_best = model.predict(df.loc[:,X])
return yhat_best, b0, b1
def _rss(y, yhat):
return np.sum((y - yhat)**2)
def _mse(y,X,b0,b1):
yhat = b0 + b1*X
return _rss(y,yhat)/len(y)
def _loss_grid(x,y,w0s, w1s):
'Calculate losses for many w0 and w1'
WW0, WW1 = np.meshgrid(w0s, w1s)
W0 = np.ravel(WW0).reshape(1,-1)
W1 = np.ravel(WW1).reshape(1,-1)
x = x.reshape(-1,1)
y = y.reshape(-1,1)
yhat = W0 + np.dot(x,W1)
mse = np.sum((y-yhat)**2,axis=0)# / len(y) # Calculate RSS
mse = mse.reshape(WW0.shape)
return WW0, WW1, mse
def plot_surface(xx,yy,zz, b0, b1, rss):
fig = plt.figure(figsize=(9,7))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(xx,yy,zz, cmap=cm.coolwarm,
linewidth=2, antialiased=False, alpha=0.4, rstride=1, cstride=1)
ax.set_xlabel("b0", size=12)
ax.set_ylabel("b1", size=12)
ax.set_zlabel("RSS", size=12)
ax.set_zlim(0,np.max(zz))
ax.scatter(b0,b1,rss, c="red", s=100)
return fig, ax
def _tss(y):
return np.sum((y - np.mean(y))**2)
def _r2(y , yhat):
rss = _rss(y,yhat)
tss = _tss(y)
return (1 - rss / tss)
def _F(y,yhat,p=1):
rss = _rss(y,yhat)
tss = _tss(y)
F = ((tss - rss)/p) / (rss/(len(y)-p-1))
return F
def plot(df,show_line=False, show_errors=False, show_best=False):
fig, ax = plt.subplots(figsize=(9,7))
y = df.iloc[:,0]
X = df.iloc[:,1]
yhat = df.iloc[:,2]
yhat_best = df.iloc[:,3]
ax.scatter(X,y,s=50, label="Data")
if show_line:
ax.plot(X,yhat, linewidth=3, color="red", label="yhat")
if show_errors:
ax.vlines(X,ymin=y, ymax=yhat, color="gray", alpha=0.5, label="Residuals")
if show_best:
ax.plot(X,yhat_best,linewidth=3, color="black", label="yhat best", alpha=0.2)
scaler = 1.2
ymin, ymax = np.min(y), np.max(y)
ax.set_xlabel(f"{X.name}",size=12)
ax.set_ylabel(f"{y.name}", size=12)
ax.set_ylim(ymin*(1-scaler), ymax*(scaler))
ax.set_title(f'Simple linear regression of {y.name} on {X.name}');
ax.legend(frameon=False, loc="upper left")
sns.despine()
return fig
def linear_regression():
'Main function to run entire chapter'
# Load data
data = load_data()
cols = data.columns
st.sidebar.markdown("**Choose X and y**")
y = st.sidebar.selectbox("Choose y",options=cols, index=len(cols)-1)
X = st.sidebar.selectbox("Choose X", options=[c for c in cols if c != y])
df = data[[y,X]]
standardize = st.sidebar.checkbox("Standardize X?",value=True)
if standardize:
standardized = (df[X]- df[X].mean()) / df[X].std()
df[X] = standardized
b0, b1 = 5., 0.
betas = [b0, b1]
df["yhat"] = betas[0]+ betas[1] * df[X]
df["yhat_best"], bbest0, bbest1 = _ols_best(df)
st.sidebar.markdown('---')
st.sidebar.markdown('**Choose coefficients**')
scaler = bbest0
MIN0, MAX0 = float(np.round(bbest0-scaler,3)), float(np.round(bbest0+scaler, 3))
b0 = st.sidebar.slider("Intercept (b0)",float(MIN0),float(MAX0),value=float(MIN0), step=0.001)
scaler = bbest1
MIN1, MAX1 = float(np.round(bbest1-scaler,3)), float(np.round(bbest1+scaler, 3))
b1 = st.sidebar.slider("Slope (b1)",MIN1, MAX1, value=MIN1, step=0.001)
st.sidebar.markdown('---')
st.sidebar.markdown('**Choose plot options**')
show_regression = st.sidebar.checkbox("Show yhat \n(based on coefficients)")
show_errors = st.sidebar.checkbox("Show errors")
show_best = st.sidebar.checkbox("Show yhat (based on optimization)")
st.header("Simple linear regression")
# Data
show_data = st.beta_expander("Show data")
with show_data:
st.dataframe(df[[y,X]])
# Specification
show_specification = st.beta_expander("Show model specification")
with show_specification:
st.markdown(r'''
Relationship is defined as
$$
\hat{y} = \beta_0 + \beta_1 X
$$''')
st.write(f"In our case this means:")
st.write(f"${y}$ = `{b0:.2f}`+ `{b1:.2f}`${X}$")
st.write(f'''
**where**
${y}$ = unit of sales (in thousands),
${X}$ = EUR of advertisment (in thousands)
''')
# Plot
betas = [b0, b1]
df["yhat"] = betas[0]+ betas[1] * df[X]
df["yhat_best"], bbest0, bbest1 = _ols_best(df)
show_plot = st.beta_expander("Show data plot")
with show_plot:
fig = plot(df , show_line=show_regression, show_errors=show_errors, show_best=show_best)
st.pyplot(fig)
# Assessing accuracy
show_accuracy = st.beta_expander("Assess model accuracy")
ytrue, yhat, ybest = df[y], df["yhat"], df["yhat_best"]
with show_accuracy:
col1, col2 = st.beta_columns(2)
with col1:
col1.markdown("**Chosen model**")
st.write(r'$\beta_0$ = ', np.round(b0,3))
st.write(r'$\beta_1$ = ', np.round(b1,3))
rss = _rss(ytrue, yhat)
st.write(r'$\text{RSS}$ = ', np.round(rss,3))
r2 = _r2(ytrue, yhat)
st.write(r'$R^2$ = ', np.round(r2,3))
F = _F(ytrue, yhat)
st.write(r'$F\text{-statistic}$ = ', np.round(F,3))
with col2:
col2.markdown("**Optimized model**")
st.write(r'$\beta_0$ = ', np.round(bbest0,3))
st.write(r'$\beta_1$ = ', np.round(bbest1,3))
rss = _rss(ytrue, ybest)
st.write(r'$\text{RSS}$ = ', np.round(rss,3))
r2 = _r2(ytrue, ybest)
st.write(r'$R^2$ = ', np.round(r2,3))
F = _F(ytrue, ybest)
st.write(r'$F\text{-statistic}$ = ', np.round(F,3))
show_losses = st.beta_expander("Show RSS")
with show_losses:
col1, col2 = st.beta_columns(2)
angle1 = col1.slider("Vertical",0,360,value=24, step=1)
angle2 = col2.slider("Horizontal",0,360,value=318, step=1)
st.markdown("**RSS vs. coefficients**")
xtrue = df[X].values
ytrue_np = ytrue.values
w0s = np.linspace(MIN0, MAX0, 50)
w1s = np.linspace(MIN1, MAX1, 50)
xx,yy,losses = _loss_grid(xtrue,ytrue_np,w0s, w1s)
col1, col2 = st.beta_columns(2)
fig, ax = plot_surface(xx,yy,losses,b0, b1, _rss(ytrue,yhat ))
ax.view_init(angle1, angle2)
st.pyplot(fig)