-
Notifications
You must be signed in to change notification settings - Fork 7
/
ps2_keyboard.v
699 lines (635 loc) · 24.4 KB
/
ps2_keyboard.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//-------------------------------------------------------------------------------------
//
// Author: John Clayton
// Date : April 30, 2001
// Update: 4/30/01 copied this file from lcd_2.v (pared down).
// Update: 5/24/01 changed the first module from "ps2_keyboard_receiver"
// to "ps2_keyboard_interface"
// Update: 5/29/01 Added input synchronizing flip-flops. Changed state
// encoding (m1) for good operation after part config.
// Update: 5/31/01 Added low drive strength and slow transitions to ps2_clk
// and ps2_data in the constraints file. Added the signal
// "tx_shifting_done" as distinguished from "rx_shifting_done."
// Debugged the transmitter portion in the lab.
// Update: 6/01/01 Added horizontal tab to the ascii output.
// Update: 6/01/01 Added parameter TRAP_SHIFT_KEYS.
// Update: 6/05/01 Debugged the "debounce" timer functionality.
// Used 60usec timer as a "watchdog" timeout during
// receive from the keyboard. This means that a keyboard
// can now be "hot plugged" into the interface, without
// messing up the bit_count, since the bit_count is reset
// to zero during periods of inactivity anyway. This was
// difficult to debug. I ended up using the logic analyzer,
// and had to scratch my head quite a bit.
// Update: 6/06/01 Removed extra comments before the input synchronizing
// flip-flops. Used the correct parameter to size the
// 5usec_timer_count. Changed the name of this file from
// ps2.v to ps2_keyboard.v
// Update: 6/06/01 Removed "&& q[7:0]" in output_strobe logic. Removed extra
// commented out "else" condition in the shift register and
// bit counter.
// Update: 6/07/01 Changed default values for 60usec timer parameters so that
// they correspond to 60usec for a 49.152MHz clock.
//
//
//
//
//
// Description
//-------------------------------------------------------------------------------------
// This is a state-machine driven serial-to-parallel and parallel-to-serial
// interface to the ps2 style keyboard interface. The details of the operation
// of the keyboard interface were obtained from the following website:
//
// http://www.beyondlogic.org/keyboard/keybrd.htm
//
// Some aspects of the keyboard interface are not implemented (e.g, parity
// checking for the receive side, and recognition of the various commands
// which the keyboard sends out, such as "power on selt test passed," "Error"
// and "Resend.") However, if the user wishes to recognize these reply
// messages, the scan code output can always be used to extend functionality
// as desired.
//
// Note that the "Extended" (0xE0) and "Released" (0xF0) codes are recognized.
// The rx interface provides separate indicator flags for these two conditions
// with every valid character scan code which it provides. The shift keys are
// also trapped by the interface, in order to provide correct uppercase ASCII
// characters at the ascii output, although the scan codes for the shift keys
// are still provided at the scan code output. So, the left/right ALT keys
// can be differentiated by the presence of the rx_entended signal, while the
// left/right shift keys are differentiable by the different scan codes
// received.
//
// The interface to the ps2 keyboard uses ps2_clk clock rates of
// 30-40 kHz, dependent upon the keyboard itself. The rate at which the state
// machine runs should be at least twice the rate of the ps2_clk, so that the
// states can accurately follow the clock signal itself. Four times
// oversampling is better. Say 200kHz at least. The upper limit for clocking
// the state machine will undoubtedly be determined by delays in the logic
// which decodes the scan codes into ASCII equivalents. The maximum speed
// will be most likely many megahertz, depending upon target technology.
// In order to run the state machine extremely fast, synchronizing flip-flops
// have been added to the ps2_clk and ps2_data inputs of the state machine.
// This avoids poor performance related to slow transitions of the inputs.
//
// Because this is a bi-directional interface, while reading from the keyboard
// the ps2_clk and ps2_data lines are used as inputs. While writing to the
// keyboard, however (which may be done at any time. If writing interrupts a
// read from the keyboard, the keyboard will buffer up its data, and send
// it later) both the ps2_clk and ps2_data lines are occasionally pulled low,
// and pullup resistors are used to bring the lines high again, by setting
// the drivers to high impedance state.
//
// The tx interface, for writing to the keyboard, does not provide any special
// pre-processing. It simply transmits the 8-bit command value to the
// keyboard.
//
// Pullups MUST BE USED on the ps2_clk and ps2_data lines for this design,
// whether they be internal to an FPGA I/O pad, or externally placed.
// If internal pullups are used, they may be fairly weak, causing bounces
// due to crosstalk, etc. There is a "debounce timer" implemented in order
// to eliminate erroneous state transitions which would occur based on bounce.
//
// Parameters are provided in order to configure and appropriately size the
// counter of a 60 microsecond timer used in the transmitter, depending on
// the clock frequency used. The 60 microsecond period is guaranteed to be
// more than one period of the ps2_clk_s signal.
//
// Also, a smaller 5 microsecond timer has been included for "debounce".
// This is used because, with internal pullups on the ps2_clk and ps2_data
// lines, there is some bouncing around which occurs
//
// A parameter TRAP_SHIFT_KEYS allows the user to eliminate shift keypresses
// from producing scan codes (along with their "undefined" ASCII equivalents)
// at the output of the interface. If TRAP_SHIFT_KEYS is non-zero, the shift
// key status will only be reported by rx_shift_key_on. No ascii or scan
// codes will be reported for the shift keys. This is useful for those who
// wish to use the ASCII data stream, and who don't want to have to "filter
// out" the shift key codes.
//
//-------------------------------------------------------------------------------------
`resetall
`timescale 1ns/100ps
`define TOTAL_BITS 11
`define EXTEND_CODE 16'hE0
`define RELEASE_CODE 16'hF0
`define LEFT_SHIFT 16'h12
`define RIGHT_SHIFT 16'h59
module ps2_keyboard_interface (
clk,
reset,
ps2_clk,
ps2_data,
rx_extended,
rx_released,
rx_shift_key_on,
rx_scan_code,
rx_ascii,
rx_data_ready, // rx_read_o
rx_read, // rx_read_ack_i
tx_data,
tx_write,
tx_write_ack_o,
tx_error_no_keyboard_ack
);
// Parameters
// The timer value can be up to (2^bits) inclusive.
parameter TIMER_60USEC_VALUE_PP = 2950; // Number of sys_clks for 60usec.
parameter TIMER_60USEC_BITS_PP = 12; // Number of bits needed for timer
parameter TIMER_5USEC_VALUE_PP = 186; // Number of sys_clks for debounce
parameter TIMER_5USEC_BITS_PP = 8; // Number of bits needed for timer
parameter TRAP_SHIFT_KEYS_PP = 0; // Default: No shift key trap.
// State encodings, provided as parameters
// for flexibility to the one instantiating the module.
// In general, the default values need not be changed.
// State "m1_rx_clk_l" has been chosen on purpose. Since the input
// synchronizing flip-flops initially contain zero, it takes one clk
// for them to update to reflect the actual (idle = high) status of
// the I/O lines from the keyboard. Therefore, choosing 0 for m1_rx_clk_l
// allows the state machine to transition to m1_rx_clk_h when the true
// values of the input signals become present at the outputs of the
// synchronizing flip-flops. This initial transition is harmless, and it
// eliminates the need for a "reset" pulse before the interface can operate.
parameter m1_rx_clk_h = 1;
parameter m1_rx_clk_l = 0;
parameter m1_rx_falling_edge_marker = 13;
parameter m1_rx_rising_edge_marker = 14;
parameter m1_tx_force_clk_l = 3;
parameter m1_tx_first_wait_clk_h = 10;
parameter m1_tx_first_wait_clk_l = 11;
parameter m1_tx_reset_timer = 12;
parameter m1_tx_wait_clk_h = 2;
parameter m1_tx_clk_h = 4;
parameter m1_tx_clk_l = 5;
parameter m1_tx_wait_keyboard_ack = 6;
parameter m1_tx_done_recovery = 7;
parameter m1_tx_error_no_keyboard_ack = 8;
parameter m1_tx_rising_edge_marker = 9;
parameter m2_rx_data_ready = 1;
parameter m2_rx_data_ready_ack = 0;
// I/O declarations
input clk;
input reset;
inout ps2_clk;
inout ps2_data;
output rx_extended;
output rx_released;
output rx_shift_key_on;
output [7:0] rx_scan_code;
output [7:0] rx_ascii;
output rx_data_ready;
input rx_read;
input [7:0] tx_data;
input tx_write;
output tx_write_ack_o;
output tx_error_no_keyboard_ack;
reg rx_extended;
reg rx_released;
reg [7:0] rx_scan_code;
reg [7:0] rx_ascii;
reg rx_data_ready;
reg tx_error_no_keyboard_ack;
// Internal signal declarations
wire timer_60usec_done;
wire timer_5usec_done;
wire extended;
wire released;
wire shift_key_on;
// NOTE: These two signals used to be one. They
// were split into two signals because of
// shift key trapping. With shift key
// trapping, no event is generated externally,
// but the "hold" data must still be cleared
// anyway regardless, in preparation for the
// next scan codes.
wire rx_output_event; // Used only to clear: hold_released, hold_extended
wire rx_output_strobe; // Used to produce the actual output.
wire tx_parity_bit;
wire rx_shifting_done;
wire tx_shifting_done;
wire [11:0] shift_key_plus_code;
reg [`TOTAL_BITS-1:0] q;
reg [3:0] m1_state;
reg [3:0] m1_next_state;
reg m2_state;
reg m2_next_state;
reg [3:0] bit_count;
reg enable_timer_60usec;
reg enable_timer_5usec;
reg [TIMER_60USEC_BITS_PP-1:0] timer_60usec_count;
reg [TIMER_5USEC_BITS_PP-1:0] timer_5usec_count;
reg [7:0] ascii; // "REG" type only because a case statement is used.
reg left_shift_key;
reg right_shift_key;
reg hold_extended; // Holds prior value, cleared at rx_output_strobe
reg hold_released; // Holds prior value, cleared at rx_output_strobe
reg ps2_clk_s; // Synchronous version of this input
reg ps2_data_s; // Synchronous version of this input
reg ps2_clk_hi_z; // Without keyboard, high Z equals 1 due to pullups.
reg ps2_data_hi_z; // Without keyboard, high Z equals 1 due to pullups.
//--------------------------------------------------------------------------
// Module code
assign ps2_clk = ps2_clk_hi_z?1'bZ:1'b0;
assign ps2_data = ps2_data_hi_z?1'bZ:1'b0;
// Input "synchronizing" logic -- synchronizes the inputs to the state
// machine clock, thus avoiding errors related to
// spurious state machine transitions.
always @(posedge clk)
begin
ps2_clk_s <= ps2_clk;
ps2_data_s <= ps2_data;
end
// State register
always @(posedge clk)
begin : m1_state_register
if (reset) m1_state <= m1_rx_clk_h;
else m1_state <= m1_next_state;
end
// State transition logic
always @(m1_state
or q
or tx_shifting_done
or tx_write
or ps2_clk_s
or ps2_data_s
or timer_60usec_done
or timer_5usec_done
)
begin : m1_state_logic
// Output signals default to this value, unless changed in a state condition.
ps2_clk_hi_z <= 1;
ps2_data_hi_z <= 1;
tx_error_no_keyboard_ack <= 0;
enable_timer_60usec <= 0;
enable_timer_5usec <= 0;
case (m1_state)
m1_rx_clk_h :
begin
enable_timer_60usec <= 1;
if (tx_write) m1_next_state <= m1_tx_reset_timer;
else if (~ps2_clk_s) m1_next_state <= m1_rx_falling_edge_marker;
else m1_next_state <= m1_rx_clk_h;
end
m1_rx_falling_edge_marker :
begin
enable_timer_60usec <= 0;
m1_next_state <= m1_rx_clk_l;
end
m1_rx_rising_edge_marker :
begin
enable_timer_60usec <= 0;
m1_next_state <= m1_rx_clk_h;
end
m1_rx_clk_l :
begin
enable_timer_60usec <= 1;
if (tx_write) m1_next_state <= m1_tx_reset_timer;
else if (ps2_clk_s) m1_next_state <= m1_rx_rising_edge_marker;
else m1_next_state <= m1_rx_clk_l;
end
m1_tx_reset_timer:
begin
enable_timer_60usec <= 0;
m1_next_state <= m1_tx_force_clk_l;
end
m1_tx_force_clk_l :
begin
enable_timer_60usec <= 1;
ps2_clk_hi_z <= 0; // Force the ps2_clk line low.
if (timer_60usec_done) m1_next_state <= m1_tx_first_wait_clk_h;
else m1_next_state <= m1_tx_force_clk_l;
end
m1_tx_first_wait_clk_h :
begin
enable_timer_5usec <= 1;
ps2_data_hi_z <= 0; // Start bit.
if (~ps2_clk_s && timer_5usec_done)
m1_next_state <= m1_tx_clk_l;
else
m1_next_state <= m1_tx_first_wait_clk_h;
end
// This state must be included because the device might possibly
// delay for up to 10 milliseconds before beginning its clock pulses.
// During that waiting time, we cannot drive the data (q[0]) because it
// is possibly 1, which would cause the keyboard to abort its receive
// and the expected clocks would then never be generated.
m1_tx_first_wait_clk_l :
begin
ps2_data_hi_z <= 0;
if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
else m1_next_state <= m1_tx_first_wait_clk_l;
end
m1_tx_wait_clk_h :
begin
enable_timer_5usec <= 1;
ps2_data_hi_z <= q[0];
if (ps2_clk_s && timer_5usec_done)
m1_next_state <= m1_tx_rising_edge_marker;
else
m1_next_state <= m1_tx_wait_clk_h;
end
m1_tx_rising_edge_marker :
begin
ps2_data_hi_z <= q[0];
m1_next_state <= m1_tx_clk_h;
end
m1_tx_clk_h :
begin
ps2_data_hi_z <= q[0];
if (tx_shifting_done) m1_next_state <= m1_tx_wait_keyboard_ack;
else if (~ps2_clk_s) m1_next_state <= m1_tx_clk_l;
else m1_next_state <= m1_tx_clk_h;
end
m1_tx_clk_l :
begin
ps2_data_hi_z <= q[0];
if (ps2_clk_s) m1_next_state <= m1_tx_wait_clk_h;
else m1_next_state <= m1_tx_clk_l;
end
m1_tx_wait_keyboard_ack :
begin
if (~ps2_clk_s && ps2_data_s)
m1_next_state <= m1_tx_error_no_keyboard_ack;
else if (~ps2_clk_s && ~ps2_data_s)
m1_next_state <= m1_tx_done_recovery;
else m1_next_state <= m1_tx_wait_keyboard_ack;
end
m1_tx_done_recovery :
begin
if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;
else m1_next_state <= m1_tx_done_recovery;
end
m1_tx_error_no_keyboard_ack :
begin
tx_error_no_keyboard_ack <= 1;
if (ps2_clk_s && ps2_data_s) m1_next_state <= m1_rx_clk_h;
else m1_next_state <= m1_tx_error_no_keyboard_ack;
end
default : m1_next_state <= m1_rx_clk_h;
endcase
end
// State register
always @(posedge clk)
begin : m2_state_register
if (reset) m2_state <= m2_rx_data_ready_ack;
else m2_state <= m2_next_state;
end
// State transition logic
always @(m2_state or rx_output_strobe or rx_read)
begin : m2_state_logic
case (m2_state)
m2_rx_data_ready_ack:
begin
rx_data_ready <= 1'b0;
if (rx_output_strobe) m2_next_state <= m2_rx_data_ready;
else m2_next_state <= m2_rx_data_ready_ack;
end
m2_rx_data_ready:
begin
rx_data_ready <= 1'b1;
if (rx_read) m2_next_state <= m2_rx_data_ready_ack;
else m2_next_state <= m2_rx_data_ready;
end
default : m2_next_state <= m2_rx_data_ready_ack;
endcase
end
// This is the bit counter
always @(posedge clk)
begin
if ( reset
|| rx_shifting_done
|| (m1_state == m1_tx_wait_keyboard_ack) // After tx is done.
) bit_count <= 0; // normal reset
else if (timer_60usec_done
&& (m1_state == m1_rx_clk_h)
&& (ps2_clk_s)
) bit_count <= 0; // rx watchdog timer reset
else if ( (m1_state == m1_rx_falling_edge_marker) // increment for rx
||(m1_state == m1_tx_rising_edge_marker) // increment for tx
)
bit_count <= bit_count + 1;
end
// This signal is high for one clock at the end of the timer count.
assign rx_shifting_done = (bit_count == `TOTAL_BITS);
assign tx_shifting_done = (bit_count == `TOTAL_BITS-1);
// This is the signal which enables loading of the shift register.
// It also indicates "ack" to the device writing to the transmitter.
assign tx_write_ack_o = ( (tx_write && (m1_state == m1_rx_clk_h))
||(tx_write && (m1_state == m1_rx_clk_l))
);
// This is the ODD parity bit for the transmitted word.
assign tx_parity_bit = ~^tx_data;
// This is the shift register
always @(posedge clk)
begin
if (reset) q <= 0;
else if (tx_write_ack_o) q <= {1'b1,tx_parity_bit,tx_data,1'b0};
else if ( (m1_state == m1_rx_falling_edge_marker)
||(m1_state == m1_tx_rising_edge_marker) )
q <= {ps2_data_s,q[`TOTAL_BITS-1:1]};
end
// This is the 60usec timer counter
always @(posedge clk)
begin
if (~enable_timer_60usec) timer_60usec_count <= 0;
else if (~timer_60usec_done) timer_60usec_count <= timer_60usec_count + 1;
end
assign timer_60usec_done = (timer_60usec_count == (TIMER_60USEC_VALUE_PP - 1));
// This is the 5usec timer counter
always @(posedge clk)
begin
if (~enable_timer_5usec) timer_5usec_count <= 0;
else if (~timer_5usec_done) timer_5usec_count <= timer_5usec_count + 1;
end
assign timer_5usec_done = (timer_5usec_count == TIMER_5USEC_VALUE_PP - 1);
// Create the signals which indicate special scan codes received.
// These are the "unlatched versions."
assign extended = (q[8:1] == `EXTEND_CODE) && rx_shifting_done;
assign released = (q[8:1] == `RELEASE_CODE) && rx_shifting_done;
// Store the special scan code status bits
// Not the final output, but an intermediate storage place,
// until the entire set of output data can be assembled.
always @(posedge clk)
begin
if (reset || rx_output_event)
begin
hold_extended <= 0;
hold_released <= 0;
end
else
begin
if (rx_shifting_done && extended) hold_extended <= 1;
if (rx_shifting_done && released) hold_released <= 1;
end
end
// These bits contain the status of the two shift keys
always @(posedge clk)
begin
if (reset) left_shift_key <= 0;
else if ((q[8:1] == `LEFT_SHIFT) && rx_shifting_done && ~hold_released)
left_shift_key <= 1;
else if ((q[8:1] == `LEFT_SHIFT) && rx_shifting_done && hold_released)
left_shift_key <= 0;
end
always @(posedge clk)
begin
if (reset) right_shift_key <= 0;
else if ((q[8:1] == `RIGHT_SHIFT) && rx_shifting_done && ~hold_released)
right_shift_key <= 1;
else if ((q[8:1] == `RIGHT_SHIFT) && rx_shifting_done && hold_released)
right_shift_key <= 0;
end
assign rx_shift_key_on = left_shift_key || right_shift_key;
// Output the special scan code flags, the scan code and the ascii
always @(posedge clk)
begin
if (reset)
begin
rx_extended <= 0;
rx_released <= 0;
rx_scan_code <= 0;
rx_ascii <= 0;
end
else if (rx_output_strobe)
begin
rx_extended <= hold_extended;
rx_released <= hold_released;
rx_scan_code <= q[8:1];
rx_ascii <= ascii;
end
end
// Store the final rx output data only when all extend and release codes
// are received and the next (actual key) scan code is also ready.
// (the presence of rx_extended or rx_released refers to the
// the current latest scan code received, not the previously latched flags.)
assign rx_output_event = (rx_shifting_done
&& ~extended
&& ~released
);
assign rx_output_strobe = (rx_shifting_done
&& ~extended
&& ~released
&& ( (TRAP_SHIFT_KEYS_PP == 0)
|| ( (q[8:1] != `RIGHT_SHIFT)
&&(q[8:1] != `LEFT_SHIFT)
)
)
);
// This part translates the scan code into an ASCII value...
// Only the ASCII codes which I considered important have been included.
// if you want more, just add the appropriate case statement lines...
// (You will need to know the keyboard scan codes you wish to assign.)
// The entries are listed in ascending order of ASCII value.
assign shift_key_plus_code = {3'b0,rx_shift_key_on,q[8:1]};
always @(shift_key_plus_code)
begin
casez (shift_key_plus_code)
12'h?66 : ascii <= 8'h08; // Backspace ("backspace" key)
12'h?0d : ascii <= 8'h09; // Horizontal Tab
12'h?5a : ascii <= 8'h0d; // Carriage return ("enter" key)
12'h?76 : ascii <= 8'h1b; // Escape ("esc" key)
12'h?29 : ascii <= 8'h20; // Space
12'h116 : ascii <= 8'h21; // !
12'h152 : ascii <= 8'h22; // "
12'h126 : ascii <= 8'h23; // #
12'h125 : ascii <= 8'h24; // $
12'h12e : ascii <= 8'h25; // %
12'h13d : ascii <= 8'h26; // &
12'h052 : ascii <= 8'h27; // '
12'h146 : ascii <= 8'h28; // (
12'h145 : ascii <= 8'h29; // )
12'h13e : ascii <= 8'h2a; // *
12'h155 : ascii <= 8'h2b; // +
12'h041 : ascii <= 8'h2c; // ,
12'h04e : ascii <= 8'h2d; // -
12'h049 : ascii <= 8'h2e; // .
12'h04a : ascii <= 8'h2f; // /
12'h045 : ascii <= 8'h30; // 0
12'h016 : ascii <= 8'h31; // 1
12'h01e : ascii <= 8'h32; // 2
12'h026 : ascii <= 8'h33; // 3
12'h025 : ascii <= 8'h34; // 4
12'h02e : ascii <= 8'h35; // 5
12'h036 : ascii <= 8'h36; // 6
12'h03d : ascii <= 8'h37; // 7
12'h03e : ascii <= 8'h38; // 8
12'h046 : ascii <= 8'h39; // 9
12'h14c : ascii <= 8'h3a; // :
12'h04c : ascii <= 8'h3b; // ;
12'h141 : ascii <= 8'h3c; // <
12'h055 : ascii <= 8'h3d; // =
12'h149 : ascii <= 8'h3e; // >
12'h14a : ascii <= 8'h3f; // ?
12'h11e : ascii <= 8'h40; // @
12'h11c : ascii <= 8'h41; // A
12'h132 : ascii <= 8'h42; // B
12'h121 : ascii <= 8'h43; // C
12'h123 : ascii <= 8'h44; // D
12'h124 : ascii <= 8'h45; // E
12'h12b : ascii <= 8'h46; // F
12'h134 : ascii <= 8'h47; // G
12'h133 : ascii <= 8'h48; // H
12'h143 : ascii <= 8'h49; // I
12'h13b : ascii <= 8'h4a; // J
12'h142 : ascii <= 8'h4b; // K
12'h14b : ascii <= 8'h4c; // L
12'h13a : ascii <= 8'h4d; // M
12'h131 : ascii <= 8'h4e; // N
12'h144 : ascii <= 8'h4f; // O
12'h14d : ascii <= 8'h50; // P
12'h115 : ascii <= 8'h51; // Q
12'h12d : ascii <= 8'h52; // R
12'h11b : ascii <= 8'h53; // S
12'h12c : ascii <= 8'h54; // T
12'h13c : ascii <= 8'h55; // U
12'h12a : ascii <= 8'h56; // V
12'h11d : ascii <= 8'h57; // W
12'h122 : ascii <= 8'h58; // X
12'h135 : ascii <= 8'h59; // Y
12'h11a : ascii <= 8'h5a; // Z
12'h054 : ascii <= 8'h5b; // [
12'h05d : ascii <= 8'h5c; // \
12'h05b : ascii <= 8'h5d; // ]
12'h136 : ascii <= 8'h5e; // ^
12'h14e : ascii <= 8'h5f; // _
12'h00e : ascii <= 8'h60; // `
12'h01c : ascii <= 8'h61; // a
12'h032 : ascii <= 8'h62; // b
12'h021 : ascii <= 8'h63; // c
12'h023 : ascii <= 8'h64; // d
12'h024 : ascii <= 8'h65; // e
12'h02b : ascii <= 8'h66; // f
12'h034 : ascii <= 8'h67; // g
12'h033 : ascii <= 8'h68; // h
12'h043 : ascii <= 8'h69; // i
12'h03b : ascii <= 8'h6a; // j
12'h042 : ascii <= 8'h6b; // k
12'h04b : ascii <= 8'h6c; // l
12'h03a : ascii <= 8'h6d; // m
12'h031 : ascii <= 8'h6e; // n
12'h044 : ascii <= 8'h6f; // o
12'h04d : ascii <= 8'h70; // p
12'h015 : ascii <= 8'h71; // q
12'h02d : ascii <= 8'h72; // r
12'h01b : ascii <= 8'h73; // s
12'h02c : ascii <= 8'h74; // t
12'h03c : ascii <= 8'h75; // u
12'h02a : ascii <= 8'h76; // v
12'h01d : ascii <= 8'h77; // w
12'h022 : ascii <= 8'h78; // x
12'h035 : ascii <= 8'h79; // y
12'h01a : ascii <= 8'h7a; // z
12'h154 : ascii <= 8'h7b; // {
12'h15d : ascii <= 8'h7c; // |
12'h15b : ascii <= 8'h7d; // }
12'h10e : ascii <= 8'h7e; // ~
12'h?71 : ascii <= 8'h7f; // (Delete OR DEL on numeric keypad)
default : ascii <= 8'h2e; // '.' used for unlisted characters.
endcase
end
endmodule
//`undefine TOTAL_BITS
//`undefine EXTEND_CODE
//`undefine RELEASE_CODE
//`undefine LEFT_SHIFT
//`undefine RIGHT_SHIFT