-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_exp.c
203 lines (186 loc) · 5.95 KB
/
e_exp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* @(#)e_exp.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_exp
double __ieee754_exp(double x) /* default IEEE double exp */
{
double y, hi, lo, c, t;
int32_t k, xsb;
uint32_t hx;
static const double one = 1.0;
static const double halF[2] = { 0.5, -0.5 };
static const double hugeval = 1.0e+300;
static const double twom1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0 */
static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
static const double ln2HI[2] = {
6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01 /* 0xbfe62e42, 0xfee00000 */
};
static const double ln2LO[2] = {
1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10 /* 0xbdea39ef, 0x35793c76 */
};
static const double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
static const double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
static const double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
static const double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
static const double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
static const double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
GET_HIGH_WORD(hx, x); /* high word of x */
xsb = (hx >> 31) & 1; /* sign bit of x */
hx &= IC(0x7fffffff); /* high word of |x| */
/* filter out non-finite argument */
if (hx >= IC(0x40862E42))
{ /* if |x|>=709.78... */
if (hx >= IC(0x7ff00000))
{
GET_LOW_WORD(k, x);
if (((hx & IC(0xfffff)) | k) != 0)
return x; /* NaN */
return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */
}
if (x > o_threshold) /* overflow */
{
feraiseexcept(FE_OVERFLOW);
return HUGE_VAL;
}
if (x < u_threshold) /* underflow */
{
feraiseexcept(FE_UNDERFLOW);
return 0;
}
}
/* argument reduction */
if (hx > IC(0x3fd62e42))
{ /* if |x| > 0.5 ln2 */
if (hx < IC(0x3FF0A2B2))
{ /* and |x| < 1.5 ln2 */
hi = x - ln2HI[xsb];
lo = ln2LO[xsb];
k = 1 - xsb - xsb;
} else
{
k = invln2 * x + halF[xsb];
t = k;
hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
lo = t * ln2LO[0];
}
x = hi - lo;
} else if (hx < IC(0x3e300000))
{ /* when |x|<2**-28 */
if (hugeval + x > one)
return one + x; /* trigger inexact */
return one;
} else
{
k = 0;
lo = 0;
hi = 0;
}
/* x is now in primary range */
t = x * x;
c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
if (k == 0)
return one - ((x * c) / (c - 2.0) - x);
y = one - ((lo - (x * c) / (2.0 - c)) - hi);
GET_HIGH_WORD(hx, y);
if (k >= -1021)
{
hx += (k << IEEE754_DOUBLE_SHIFT); /* add k to y's exponent */
SET_HIGH_WORD(y, hx);
return y;
} else
{
hx += ((k + 1000) << IEEE754_DOUBLE_SHIFT); /* add k to y's exponent */
SET_HIGH_WORD(y, hx);
return y * twom1000;
}
}
#endif
/* wrapper exp */
double __exp(double x)
{
double z = __ieee754_exp(x);
if (_LIB_VERSION != _IEEE_ && (!isfinite(z) || z == 0.0) && isfinite(x))
return __kernel_standard(x, x, z, signbit(x) ? KMATHERR_EXP_UNDERFLOW : KMATHERR_EXP_OVERFLOW);
return z;
}
__typeof(__exp) exp __attribute__((weak, alias("__exp")));
#ifdef __NO_LONG_DOUBLE_MATH
long double __expl(long double x) __attribute__((alias("__exp")));
__typeof(__expl) expl __attribute__((weak, alias("__exp")));
#endif