-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_pow.c
465 lines (440 loc) · 12.9 KB
/
e_pow.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3a. (anything) ** NAN is NAN except
* 3b. +1 ** NAN is 1
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is 1
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_pow
double __ieee754_pow(double x, double y)
{
double z, ax, z_h, z_l, p_h, p_l;
double y1, t1, t2, r, s, t, u, v, w;
int32_t i, j, k, yisint, n;
int32_t hx, hy, ix, iy;
uint32_t lx, ly;
static const double bp[] = { 1.0, 1.5 };
static const double dp_h[] = { 0.0, 5.84962487220764160156e-01 }; /* 0x3FE2B803, 0x40000000 */
static const double dp_l[] = { 0.0, 1.35003920212974897128e-08 }; /* 0x3E4CFDEB, 0x43CFD006 */
static const double zero = 0.0;
static const double one = 1.0;
static const double two = 2.0;
static const double two53 = 9007199254740992.0; /* 0x43400000, 0x00000000 */
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
static const double L1 = 5.99999999999994648725e-01; /* 0x3FE33333, 0x33333303 */
static const double L2 = 4.28571428578550184252e-01; /* 0x3FDB6DB6, 0xDB6FABFF */
static const double L3 = 3.33333329818377432918e-01; /* 0x3FD55555, 0x518F264D */
static const double L4 = 2.72728123808534006489e-01; /* 0x3FD17460, 0xA91D4101 */
static const double L5 = 2.30660745775561754067e-01; /* 0x3FCD864A, 0x93C9DB65 */
static const double L6 = 2.06975017800338417784e-01; /* 0x3FCA7E28, 0x4A454EEF */
static const double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
static const double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
static const double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
static const double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
static const double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
static const double lg2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
static const double lg2_h = 6.93147182464599609375e-01; /* 0x3FE62E43, 0x00000000 */
static const double lg2_l = -1.90465429995776804525e-09; /* 0xBE205C61, 0x0CA86C39 */
static const double ovt = 8.0085662595372944372e-0017; /* -(1024-log2(ovfl+.5ulp)) */
static const double cp = 9.61796693925975554329e-01; /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
static const double cp_h = 9.61796700954437255859e-01; /* 0x3FEEC709, 0xE0000000 =(float)cp */
static const double cp_l = -7.02846165095275826516e-09; /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
static const double ivln2 = 1.44269504088896338700e+00; /* 0x3FF71547, 0x652B82FE =1/ln2 */
static const double ivln2_h = 1.44269502162933349609e+00; /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
static const double ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */
GET_DOUBLE_WORDS(hx, lx, x);
GET_DOUBLE_WORDS(hy, ly, y);
ix = hx & IC(0x7fffffff);
iy = hy & IC(0x7fffffff);
/* y==zero: x**0 = 1 */
if ((iy | ly) == 0)
{
/* unless x is signaling NaN */
if (issignaling(x))
return __builtin_nan("");
return one;
}
/* x|y==NaN return NaN unless x==1 then return 1 */
if (ix > IC(0x7ff00000) || ((ix == IC(0x7ff00000)) && (lx != 0)) || iy > IC(0x7ff00000) || ((iy == IC(0x7ff00000)) && (ly != 0)))
{
if (((ix - IC(0x3ff00000)) | lx) == 0 && !(hx & UC(0x80000000)))
return one;
else
return __builtin_nan("");
}
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
if (iy >= IC(0x43400000))
yisint = 2; /* even integer y */
else if (iy >= IC(0x3ff00000))
{
k = (iy >> IEEE754_DOUBLE_SHIFT) - IEEE754_DOUBLE_BIAS; /* exponent */
if (k > IEEE754_DOUBLE_SHIFT)
{
j = ly >> (52 - k);
if ((j << (52 - k)) == (int32_t)ly)
yisint = 2 - (j & 1);
} else if (ly == 0)
{
j = iy >> (IEEE754_DOUBLE_SHIFT - k);
if ((j << (IEEE754_DOUBLE_SHIFT - k)) == iy)
yisint = 2 - (j & 1);
}
}
}
/* special value of y */
if (ly == 0)
{
if (iy == IC(0x7ff00000))
{ /* y is +-inf */
if (((ix - IC(0x3ff00000)) | lx) == 0)
return one; /* +-1**+-inf = 1 */
else if (ix >= IC(0x3ff00000)) /* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (iy == IC(0x3ff00000))
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == IC(0x40000000))
return x * x; /* y is 2 */
if (hy == IC(0x3fe00000))
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return __ieee754_sqrt(x);
}
}
ax = __ieee754_fabs(x);
/* special value of x */
if (lx == 0)
{
if (ix == IC(0x7ff00000) || ix == 0 || ix == IC(0x3ff00000))
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - IC(0x3ff00000)) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
} else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* |y| is huge */
if (iy > IC(0x41e00000))
{ /* if |y| > 2**31 */
if (iy > IC(0x43f00000))
{ /* if |y| > 2**64, must o/uflow */
if (ix <= IC(0x3fefffff))
{
if (hy < 0)
{
feraiseexcept(FE_OVERFLOW);
return HUGE_VAL;
}
feraiseexcept(FE_UNDERFLOW);
return 0;
}
if (ix >= IC(0x3ff00000))
{
if (hy > 0)
{
feraiseexcept(FE_OVERFLOW);
return HUGE_VAL;
}
feraiseexcept(FE_UNDERFLOW);
return 0;
}
}
/* over/underflow if x is not close to one */
if (ix < IC(0x3fefffff))
{
if (hy < 0)
{
feraiseexcept(FE_OVERFLOW);
return HUGE_VAL;
}
feraiseexcept(FE_UNDERFLOW);
return 0;
}
if (ix > IC(0x3ff00000))
{
if (hy > 0)
{
feraiseexcept(FE_OVERFLOW);
return HUGE_VAL;
}
feraiseexcept(FE_UNDERFLOW);
return 0;
}
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax - 1; /* t has 20 trailing zeros */
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
v = t * ivln2_l - w * ivln2;
t1 = u + v;
SET_LOW_WORD(t1, 0);
t2 = v - (t1 - u);
} else
{
double s2, s_h, s_l, t_h, t_l;
n = 0;
/* take care subnormal number */
if (ix < IC(0x00100000))
{
ax *= two53;
n -= 53;
GET_HIGH_WORD(ix, ax);
}
n += ((ix) >> IEEE754_DOUBLE_SHIFT) - IEEE754_DOUBLE_BIAS;
j = ix & IC(0x000fffff);
/* determine interval */
ix = j | IC(0x3ff00000); /* normalize ix */
if (j <= IC(0x3988E))
k = 0; /* |x|<sqrt(3/2) */
else if (j < IC(0xBB67A))
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= IC(0x00100000);
}
SET_HIGH_WORD(ax, ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = s;
SET_LOW_WORD(s_h, 0);
/* t_h=ax+bp[k] High */
t_h = zero;
SET_HIGH_WORD(t_h, ((ix >> 1) | IC(0x20000000)) + IC(0x00080000) + (k << 18));
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
SET_LOW_WORD(t_h, 0);
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
SET_LOW_WORD(p_h, 0);
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
SET_LOW_WORD(t1, 0);
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
SET_LOW_WORD(y1, 0);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
GET_DOUBLE_WORDS(j, i, z);
if (j >= IC(0x40900000))
{ /* z >= 1024 */
if (((j - IC(0x40900000)) | i) != 0) /* if z > 1024 */
{
feraiseexcept(FE_OVERFLOW);
return copysign(HUGE_VAL, s);
}
if (p_l + ovt > z - p_h)
{
feraiseexcept(FE_OVERFLOW);
return copysign(HUGE_VAL, s);
}
} else if ((j & IC(0x7fffffff)) >= IC(0x4090cc00))
{ /* z <= -1075 */
if (((j - IC(0xc090cc00)) | i) != 0) /* z < -1075 */
{
feraiseexcept(FE_UNDERFLOW);
return copysign(0.0, s);
}
if (p_l <= z - p_h)
{
feraiseexcept(FE_UNDERFLOW);
return copysign(0.0, s);
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j & IC(0x7fffffff);
k = (i >> IEEE754_DOUBLE_SHIFT) - IEEE754_DOUBLE_BIAS;
n = 0;
if (i > IC(0x3fe00000))
{ /* if |z| > 0.5, set n = [z+0.5] */
n = j + (IC(0x00100000) >> (k + 1));
k = ((n & IC(0x7fffffff)) >> IEEE754_DOUBLE_SHIFT) - IEEE754_DOUBLE_BIAS; /* new k for n */
t = zero;
SET_HIGH_WORD(t, n & ~(UC(0x000fffff) >> k));
n = ((n & IC(0x000fffff)) | IC(0x00100000)) >> (IEEE754_DOUBLE_SHIFT - k);
if (j < 0)
n = -n;
p_h -= t;
}
t = p_l + p_h;
SET_LOW_WORD(t, 0);
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
t = z * z;
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
GET_HIGH_WORD(j, z);
j += (n << IEEE754_DOUBLE_SHIFT);
if ((j >> IEEE754_DOUBLE_SHIFT) <= 0)
{
z = __ieee754_scalbn(z, (int) n); /* subnormal output */
} else
{
SET_HIGH_WORD(z, j);
}
return s * z;
}
#endif
/* wrapper pow */
double __pow(double x, double y)
{
double z = __ieee754_pow(x, y);
if (!isfinite(z))
{
#ifdef __have_fpu_pow
if (isnan(y) && x == 1.0)
{
z = 1.0;
} else
#endif
if (_LIB_VERSION != _IEEE_)
{
if (isnan(x))
{
if (y == 0.0)
/* pow(NaN,0.0) */
return __kernel_standard(x, y, z, KMATHERR_POW_NAN);
} else if (isfinite(x) && isfinite(y))
{
if (isnan(z))
{
/* pow neg**non-int */
return __kernel_standard(x, y, z, KMATHERR_POW_NONINT);
} else if (x == 0.0 && y < 0.0)
{
if (signbit(x) && signbit(z))
/* pow(-0.0,negative) */
return __kernel_standard(x, y, z, KMATHERR_POW_MINUS);
else
/* pow(+0.0,negative) */
return __kernel_standard(x, y, z, KMATHERR_POW_ZEROMINUS);
} else
{
/* pow overflow */
return __kernel_standard(x, y, z, KMATHERR_POW_OVERFLOW);
}
}
}
} else if (z == 0.0 && isfinite(x) && isfinite(y) && _LIB_VERSION != _IEEE_)
{
if (x == 0.0)
{
if (y == 0.0)
/* pow(0.0,0.0) */
return __kernel_standard(x, y, z, KMATHERR_POW_ZERO);
} else
{
/* pow underflow */
return __kernel_standard(x, y, z, KMATHERR_POW_UNDERFLOW);
}
}
return z;
}
__typeof(__pow) pow __attribute__((weak, alias("__pow")));
#ifdef __NO_LONG_DOUBLE_MATH
long double __powl(long double x, long double y) __attribute__((alias("__pow")));
__typeof(__powl) powl __attribute__((weak, alias("__pow")));
#endif