-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_tgammaf_r.c
246 lines (213 loc) · 6.06 KB
/
e_tgammaf_r.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#include "fpu_ctrl.h"
/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
- 1, in the form R * (1 + *EPS) where the return value R is an
approximation to the product and *EPS is set to indicate the
approximate error in the return value. X is such that all the
values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
X is small enough that factors quadratic in it can be
neglected. */
static float __gamma_productf(float x, float x_eps, int n, float *eps)
{
double x_full = (double) x + (double) x_eps;
double ret = x_full;
int i;
volatile float fret;
for (i = 1; i < n; i++)
ret *= x_full + i;
fret = (float)ret;
*eps = (ret - (double)fret) / (double)fret;
return fret;
}
/* Return gamma (X), for positive X less than 42, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static float gammaf_positive(float x, int *exp2_adj)
{
int local_signgam;
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const float gamma_coeff[] = {
0x1.555556p-4f,
-0xb.60b61p-12f,
0x3.403404p-12f
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
if (x < 0.5f)
{
*exp2_adj = 0;
return __ieee754_expf(__ieee754_lgammaf_r(x + 1.0f, &local_signgam)) / x;
} else if (x <= 1.5f)
{
*exp2_adj = 0;
return __ieee754_expf(__ieee754_lgammaf_r(x, &local_signgam));
} else if (x < 2.5f)
{
float x_adj = x - 1.0f;
*exp2_adj = 0;
return __ieee754_expf(__ieee754_lgammaf_r(x_adj, &local_signgam)) * x_adj;
} else
{
float eps = 0;
float x_eps = 0;
float x_adj = x;
float prod = 1;
float exp_adj;
float x_adj_int;
float x_adj_frac;
int x_adj_log2;
float x_adj_mant;
float ret;
float bsum;
float x_adj2;
size_t i;
if (x < 4.0f)
{
/* Adjust into the range for applying Stirling's
approximation. */
float n = __ieee754_ceilf(4.0f - x);
volatile float x_tmp = x + n;
x_adj = x_tmp;
x_eps = (x - (x_adj - n));
prod = __gamma_productf(x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
exp_adj = -eps;
x_adj_int = __ieee754_roundf(x_adj);
x_adj_frac = x_adj - x_adj_int;
x_adj_mant = __ieee754_frexpf(x_adj, &x_adj_log2);
if (x_adj_mant < (float) M_SQRT1_2)
{
x_adj_log2--;
x_adj_mant *= 2.0f;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
ret = __ieee754_powf(x_adj_mant, x_adj)
* __ieee754_exp2f(x_adj_log2 * x_adj_frac)
* __ieee754_expf(-x_adj) * __ieee754_sqrtf(2.0f * (float) M_PI / x_adj) / prod;
exp_adj += x_eps * __ieee754_logf(x_adj);
bsum = gamma_coeff[NCOEFF - 1];
x_adj2 = x_adj * x_adj;
for (i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
ret += ret * __ieee754_expm1f(exp_adj);
return ret;
}
#undef NCOEFF
}
float __ieee754_tgammaf_r(float x, int *signgamp)
{
int32_t hx;
volatile float ret;
GET_FLOAT_WORD(hx, x);
if ((hx & IC(0x7fffffff)) == 0)
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0F / x;
}
if (hx < 0 && (uint32_t) hx < UC(0xff800000) && __ieee754_rintf(x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (hx == IC(0xff800000))
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if ((hx & IC(0x7f800000)) == IC(0x7f800000))
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 36.0f)
{
/* Overflow. */
*signgamp = 0;
ret = FLT_MAX * FLT_MAX;
return ret;
} else
{
SAVE_AND_SET_ROUND(FE_TONEAREST);
if (x > 0.0f)
{
int exp2_adj;
float tret;
*signgamp = 0;
tret = gammaf_positive(x, &exp2_adj);
ret = __ieee754_scalbnf(tret, exp2_adj);
} else if (x >= -FLT_EPSILON / 4.0f)
{
*signgamp = 0;
ret = 1.0f / x;
} else
{
float tx = __ieee754_truncf(x);
*signgamp = (tx == 2.0f * __ieee754_truncf(tx / 2.0f)) ? -1 : 1;
if (x <= -42.0f)
/* Underflow. */
ret = FLT_MIN * FLT_MIN;
else
{
float frac = tx - x;
float sinpix;
int exp2_adj;
float tret;
if (frac > 0.5f)
frac = 1.0f - frac;
sinpix = (frac <= 0.25f ? __ieee754_sinf((float) M_PI * frac) : __ieee754_cosf((float) M_PI * (0.5f - frac)));
tret = (float) M_PI / (-x * sinpix * gammaf_positive(-x, &exp2_adj));
ret = __ieee754_scalbnf(tret, -exp2_adj);
}
}
RESTORE_ROUND();
}
if (isinf(ret) && x != 0.0f)
{
if (*signgamp < 0)
{
ret = -copysignf(FLT_MAX, ret) * FLT_MAX;
ret = -ret;
} else
{
ret = copysignf(FLT_MAX, ret) * FLT_MAX;
}
} else if (ret == 0.0f)
{
if (*signgamp < 0)
{
ret = -copysignf(FLT_MIN, ret) * FLT_MIN;
ret = -ret;
} else
{
ret = copysignf(FLT_MIN, ret) * FLT_MIN;
}
}
return ret;
}