-
Notifications
You must be signed in to change notification settings - Fork 0
/
tropp.cpp
375 lines (314 loc) · 10.4 KB
/
tropp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
http://webee.technion.ac.il/~ayellet/Ps/TroppTalShimshoni.pdf
In this file is the code of the algorithm described in:
"A fast triangle to triangle intersection test for collision detection"
Oren Tropp, Ayellet Tal, Ilan Shimshoni
Computer Animation and Virtual Worlds 17(5) 2006, pp 527-535.
You are free to use the code but cite the paper.
The following code tests for 3D triangle triangle intersection.
Main procedures:
int tr_tri_intersect3D (double *C1, double *P1, double *P2,
double *D1, double *Q1, double *Q2);
int coplanar_tri_tri(double N[3],double V0[3],double V1[3],double V2[3],
double U0[3],double U1[3],double U2[3]);
tr_tri_intersect3D - C1 is a vertex of triangle A. P1,P2 are the two edges originating from this vertex.
D1 is a vertex of triangle B. P1,P2 are the two edges originating from this vertex.
Returns zero for disjoint triangles and non-zero for intersection.
coplanar_tri_tri - This procedure for testing coplanar triangles for intersection is
taken from Tomas Moller's algorithm.
See article "A Fast Triangle-Triangle Intersection Test",
Journal of Graphics Tools, 2(2), 1997
V1,V2,V3 are vertices of one triangle with normal N. U1,U2,U3 are vertices of the other
triangle.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <math.h>
#include <memory.h>
#include <time.h>
#ifndef UNIX
#define drand48() (rand()*1.0/RAND_MAX)
#endif
int coplanar_tri_tri(double N[3],double V0[3],double V1[3],double V2[3],
double U0[3],double U1[3],double U2[3]);
// some vector macros
#define CROSS(dest,v1,v2) \
dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
#define sVpsV_2( Vr, s1, V1,s2, V2);\
{\
Vr[0] = s1*V1[0] + s2*V2[0];\
Vr[1] = s1*V1[1] + s2*V2[1];\
}\
#define myVpV(g,v2,v1);\
{\
g[0] = v2[0]+v1[0];\
g[1] = v2[1]+v1[1];\
g[2] = v2[2]+v1[2];\
}\
#define myVmV(g,v2,v1);\
{\
g[0] = v2[0]-v1[0];\
g[1] = v2[1]-v1[1];\
g[2] = v2[2]-v1[2];\
}\
// 2D intersection of segment and triangle.
#define seg_collide3( q, r)\
{\
p1[0]=SF*P1[0];\
p1[1]=SF*P1[1];\
p2[0]=SF*P2[0];\
p2[1]=SF*P2[1];\
det1 = p1[0]*q[1]-q[0]*p1[1];\
gama1 = (p1[0]*r[1]-r[0]*p1[1])*det1;\
alpha1 = (r[0]*q[1] - q[0]*r[1])*det1;\
alpha1_legal = (alpha1>=0) && (alpha1<=(det1*det1) && (det1!=0));\
det2 = p2[0]*q[1] - q[0]*p2[1];\
alpha2 = (r[0]*q[1] - q[0]*r[1]) *det2;\
gama2 = (p2[0]*r[1] - r[0]*p2[1]) * det2;\
alpha2_legal = (alpha2>=0) && (alpha2<=(det2*det2) && (det2 !=0));\
det3=det2-det1;\
gama3=((p2[0]-p1[0])*(r[1]-p1[1]) - (r[0]-p1[0])*(p2[1]-p1[1]))*det3;\
if (alpha1_legal)\
{\
if (alpha2_legal)\
{\
if ( ((gama1<=0) && (gama1>=-(det1*det1))) || ((gama2<=0) && (gama2>=-(det2*det2))) || (gama1*gama2<0)) return 12;\
}\
else\
{\
if ( ((gama1<=0) && (gama1>=-(det1*det1))) || ((gama3<=0) && (gama3>=-(det3*det3))) || (gama1*gama3<0)) return 13;\
}\
}\
else\
if (alpha2_legal)\
{\
if ( ((gama2<=0) && (gama2>=-(det2*det2))) || ((gama3<=0) && (gama3>=-(det3*det3))) || (gama2*gama3<0)) return 23;\
}\
return 0;\
}
//main procedure
int tr_tri_intersect3D (double *C1, double *P1, double *P2,
double *D1, double *Q1, double *Q2)
{
double t[3],p1[3], p2[3],r[3],r4[3];
double beta1, beta2, beta3;
double gama1, gama2, gama3;
double det1, det2, det3;
double dp0, dp1, dp2;
double dq1,dq2,dq3,dr, dr3;
double alpha1, alpha2;
bool alpha1_legal, alpha2_legal;
double SF;
bool beta1_legal, beta2_legal;
myVmV(r,D1,C1);
// determinant computation
dp0 = P1[1]*P2[2]-P2[1]*P1[2];
dp1 = P1[0]*P2[2]-P2[0]*P1[2];
dp2 = P1[0]*P2[1]-P2[0]*P1[1];
dq1 = Q1[0]*dp0 - Q1[1]*dp1 + Q1[2]*dp2;
dq2 = Q2[0]*dp0 - Q2[1]*dp1 + Q2[2]*dp2;
dr = -r[0]*dp0 + r[1]*dp1 - r[2]*dp2;
beta1 = dr*dq2; // beta1, beta2 are scaled so that beta_i=beta_i*dq1*dq2
beta2 = dr*dq1;
beta1_legal = (beta2>=0) && (beta2 <=dq1*dq1) && (dq1 != 0);
beta2_legal = (beta1>=0) && (beta1 <=dq2*dq2) && (dq2 != 0);
dq3=dq2-dq1;
dr3=+dr-dq1; // actually this is -dr3
if ((dq1 == 0) && (dq2 == 0))
{
if (dr!=0) return 0; // triangles are on parallel planes
else
{ // triangles are on the same plane
double C2[3],C3[3],D2[3],D3[3], N1[3];
// We use the coplanar test of Moller which takes the 6 vertices and 2 normals
//as input.
myVpV(C2,C1,P1);
myVpV(C3,C1,P2);
myVpV(D2,D1,Q1);
myVpV(D3,D1,Q2);
CROSS(N1,P1,P2);
return coplanar_tri_tri(N1,C1, C2,C3,D1,D2,D3);
}
}
else if (!beta2_legal && !beta1_legal) return 0;// fast reject-all vertices are on
// the same side of the triangle plane
else if (beta2_legal && beta1_legal) //beta1, beta2
{
SF = dq1*dq2;
sVpsV_2(t,beta2,Q2, (-beta1),Q1);
}
else if (beta1_legal && !beta2_legal) //beta1, beta3
{
SF = dq1*dq3;
beta1 =beta1-beta2; // all betas are multiplied by a positive SF
beta3 =dr3*dq1;
sVpsV_2(t,(SF-beta3-beta1),Q1,beta3,Q2);
}
else if (beta2_legal && !beta1_legal) //beta2, beta3
{
SF = dq2*dq3;
beta2 =beta1-beta2; // all betas are multiplied by a positive SF
beta3 =dr3*dq2;
sVpsV_2(t,(SF-beta3),Q1,(beta3-beta2),Q2);
Q1=Q2;
beta1=beta2;
}
sVpsV_2(r4,SF,r,beta1,Q1);
seg_collide3(t,r4); // calculates the 2D intersection
return 0;
}
/* this edge to edge test is based on Franlin Antonio's gem:
"Faster Line Segment Intersection", in Graphics Gems III,
pp. 199-202 */
#define FABS(x) (x>=0?x:-x) /* implement as is fastest on your machine */
#define EDGE_EDGE_TEST(V0,U0,U1) \
Bx=U0[i0]-U1[i0]; \
By=U0[i1]-U1[i1]; \
Cx=V0[i0]-U0[i0]; \
Cy=V0[i1]-U0[i1]; \
f=Ay*Bx-Ax*By; \
d=By*Cx-Bx*Cy; \
if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
{ \
e=Ax*Cy-Ay*Cx; \
if(f>0) \
{ \
if(e>=0 && e<=f) return 1; \
} \
else \
{ \
if(e<=0 && e>=f) return 1; \
} \
}
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
{ \
double Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
Ax=V1[i0]-V0[i0]; \
Ay=V1[i1]-V0[i1]; \
/* test edge U0,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U0,U1); \
/* test edge U1,U2 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U1,U2); \
/* test edge U2,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U2,U0); \
}
#define POINT_IN_TRI(V0,U0,U1,U2) \
{ \
double a,b,c,d0,d1,d2; \
/* is T1 completly inside T2? */ \
/* check if V0 is inside tri(U0,U1,U2) */ \
a=U1[i1]-U0[i1]; \
b=-(U1[i0]-U0[i0]); \
c=-a*U0[i0]-b*U0[i1]; \
d0=a*V0[i0]+b*V0[i1]+c; \
\
a=U2[i1]-U1[i1]; \
b=-(U2[i0]-U1[i0]); \
c=-a*U1[i0]-b*U1[i1]; \
d1=a*V0[i0]+b*V0[i1]+c; \
\
a=U0[i1]-U2[i1]; \
b=-(U0[i0]-U2[i0]); \
c=-a*U2[i0]-b*U2[i1]; \
d2=a*V0[i0]+b*V0[i1]+c; \
if(d0*d1>0.0) \
{ \
if(d0*d2>0.0) return 1; \
} \
}
//This procedure testing for intersection between coplanar triangles is taken
// from Tomas Moller's
//"A Fast Triangle-Triangle Intersection Test",Journal of Graphics Tools, 2(2), 1997
int coplanar_tri_tri(double N[3],double V0[3],double V1[3],double V2[3],
double U0[3],double U1[3],double U2[3])
{
double A[3];
short i0,i1;
/* first project onto an axis-aligned plane, that maximizes the area */
/* of the triangles, compute indices: i0,i1. */
A[0]=FABS(N[0]);
A[1]=FABS(N[1]);
A[2]=FABS(N[2]);
if(A[0]>A[1])
{
if(A[0]>A[2])
{
i0=1; /* A[0] is greatest */
i1=2;
}
else
{
i0=0; /* A[2] is greatest */
i1=1;
}
}
else /* A[0]<=A[1] */
{
if(A[2]>A[1])
{
i0=0; /* A[2] is greatest */
i1=1;
}
else
{
i0=0; /* A[1] is greatest */
i1=2;
}
}
/* test all edges of triangle 1 against the edges of triangle 2 */
EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);
/* finally, test if tri1 is totally contained in tri2 or vice versa */
POINT_IN_TRI(V0,U0,U1,U2);
POINT_IN_TRI(U0,V0,V1,V2);
return 0;
}
/*
This is a simple test engine which runs the triangle to triangle test
*/
#define TEST
#ifdef TEST
double PS[10000][3][3];
double QS[10000][3][3];
double EPS[10000][2][3];
double EQS[10000][2][3];
void main()
{
int i;
int j;
int k;
int t_1 = clock();
srand(t_1);
for(i=0; i<10000; i++){
for(j=0; j<3; j++){
for(k=0; k<3; k++){
PS[i][j][k] = drand48();
QS[i][j][k] = drand48();
}
}
for(j=0; j<2; j++){
for(k=0; k<3; k++){
EPS[i][j][k] = PS[i][j+1][k] - PS[i][0][k];
EQS[i][j][k] = QS[i][j+1][k] - PS[i][0][k];
}
}
}
double sum=0;
int t0 = clock();
int sums[100]={0};
for(j=0; j<1000; j++)
for(i=0; i<10000; i++){
int res = tr_tri_intersect3D(PS[i][0],EPS[i][0],EPS[i][1],
QS[j][0],EQS[j][0],EQS[j][1]);
sums[res]++;
}
int t1 = clock();
printf(" time %d %d\n",t0-t_1,t1-t0);
for(i=0; i<100; i++)
if(sums[i]!=0)printf("%d %d\n",i,sums[i]);
}
#endif TEST