-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlinalg.C
432 lines (411 loc) · 11.7 KB
/
linalg.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
This file is part of Jenn.
Copyright 2001-2007 Fritz Obermeyer.
Jenn is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Jenn is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jenn; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "linalg.h"
namespace std {
std::ostream& operator<< (std::ostream& os, const std::vector<int>& v)
{
for (unsigned i=0; i<v.size(); ++i) os << v[i];
return os;
}
} // namespace std
using namespace LinAlg;
void cross4 (const Vect &a, const Vect &b, const Vect &c, Vect &d)
{
float t = 1.0f;
for (int i1=0; i1<4; ++i1) {
int i2 = (i1+1) % 4;
int i3 = (i2+1) % 4;
int i4 = (i3+1) % 4;
d[i1] = t * ( a[i2] * (b[i3]*c[i4] - b[i4]*c[i3])
+ a[i3] * (b[i4]*c[i2] - b[i2]*c[i4])
+ a[i4] * (b[i2]*c[i3] - b[i3]*c[i2]) );
t = -t;
}
}
void make_ortho (Mat &M)
{ //gram-schmidt orthonormalization
float coef, norm;
for (int i=0; i<4; ++i) {
for (int j=0; j<i; ++j) {
coef = inner(M[i],M[j]);
for (int k=0;k<4; ++k) M[i][k] -= coef*M[j][k];
}
norm = 0;
for (int j=0; j<4; ++j) norm += sqr(M[i][j]);
norm = sqrt(norm);
for (int j=0; j<4; ++j) M[i][j] /= norm;
}
}
void make_asym (Mat &M)
{//projects to asymmetric part of matrix
for (int i=0; i<4; ++i) {
M[i][i] = 0;
for (int j=i+1; j<4; ++j) {
float& mij = M[i][j];
float& mji = M[j][i];
float diff = 0.5f * (mij - mji);
mij = diff;
mji = -diff;
}
}
}
void mat_iscale (Mat &a, float t)
{
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
a[i][j] *= t;
}
void mat_iadd (Mat &a, const Mat &b)
{ //a +=b
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
a[i][j] += b[i][j];
}
void mat_isub (Mat &a, const Mat &b)
{ //a -= b
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
a[i][j] -= b[i][j];
}
void mat3_iadd (Mat &a, const Mat &b)
{ //a +=b
for (int i=0; i<3; ++i)
for (int j=0; j<3; ++j)
a[i][j] += b[i][j];
}
void mat_mult (const Mat &a, const Mat &b, Mat &c)
{ //a*b->c
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
{
c[i][j] = a[i][0]*b[0][j];
for (int k=1;k<4; ++k)
c[i][j] += a[i][k]*b[k][j];
}
}
void mat_trans (const Mat &a, Mat &b)
{ //a'->b
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
b[j][i] = a[i][j];
}
void mat_conj (const Mat &a, const Mat &b, Mat &c)
{ //a*b*transpose(a)->c
float temp[4][4];
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
{
temp[i][j] = a[0][i]*b[0][j];
for (int k=1;k<4; ++k)
temp[i][j] += a[k][i]*b[k][j];
}
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
{
c[i][j] = temp[i][0]*a[0][j];
for (int k=1;k<4; ++k)
c[i][j] += temp[i][k]*a[k][j];
}
}
void mat_copy (const Mat &a, Mat &b)
{ //a->b
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
b[i][j] = a[i][j];
}
void vect_mult (const Mat &a, const Vect &b, Vect &c)
{ //a*b->c
for (int i=0; i<4; ++i) {
c[i] = a[i][0] * b[0];
for (int j=1; j<4; ++j) {
c[i] += a[i][j] * b[j];
}
}
}
void vect_imul (const Mat &a, Vect &b)
{ //a*b->b
Vect c;
for (int i=0; i<4; ++i) {
c[i] = a[i][0] * b[0];
for (int j=1; j<4; ++j) {
c[i] += a[i][j] * b[j];
}
}
b = c;
}
void mat_zero (Mat &a)
{ //a->identity
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
a[i][j] = 0;
}
void mat_identity (Mat &a)
{ //a->identity
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
a[i][j] = (i==j) ? 1 : 0;
}
}
}
void mat_inverse (const Mat &a, Mat &b)
{ //inv(a)->b
float m[4][8];
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
{
m[i][j] = a[i][j];
m[i][j+4] = (i==j) ? 1 : 0;
}
for (int i=0; i<4; ++i) { //clears below diagnol
//ensure m[i][i]! = 0;
for (int j=i+1; j<4 && sqr(m[i][i])<0.2f; ++j) {
for (int k=i;k<8; ++k) {
m[i][k] += m[j][k];
}
}
for (int j=i+1; j<8; ++j) {
m[i][j] /= m[i][i];
}
m[i][i] = 1;
for (int j=i+1; j<4; ++j) {
for (int k=i+1;k<8; ++k) {
m[j][k] -= m[j][i]*m[i][k];
}
m[j][i] = 0;
}
}
for (int i = 3; i>0; --i) { //clears above diagnol
for (int j=i-1; j>=0; --j) {
for (int k=i+1;k<8; ++k) {
m[j][k] -= m[i][k]*m[j][i];
}
m[j][i] = 0;
}
}
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
b[i][j] = m[i][j+4];
}
}
}
void mat_rot (int i, int j, float theta, Mat &a)
{ //sets rotator matrix of coord i to coord j by theta
mat_identity(a);
float c = cosf(theta);
float s = sinf(theta);
a[i][i] = c;
a[j][j] = c;
a[j][i] = s;
a[i][j] = -s;
}
void print_matrix (const Mat &a)
{
for (int i=0; i<4; ++i) {
const Logging::fake_ostream& os = logger.info();
os << "matrix:\n" << a[i][0];
for (int j=1; j<4; ++j)
os << "\t" << a[i][j];
}
}
float rand_gauss ()
{//box-muller
static bool available = false;
static float y = 0.0f;
if (available) {
available = false;
return y;
} else{
float theta = 2.0f*M_PI*random_unif();
float r = sqrtf(-2.0f*logf(1.0f-random_unif()));
float x = r * cosf(theta);
y = r * sinf(theta);
available = true;
return x;
}
}
void rand_asym_mat (Mat &a, float sigma)
{
for (int i=0; i<4; ++i) {
a[i][i] = 0.0f;
for (int j=0; j<i; ++j) {
float t = M_SQRT2 * sigma * rand_gauss();
a[i][j] = t;
a[j][i] = -t;
}
}
}
//[ geometry stuff ]----------
void build_geom (const int *coxeter_utriang,
const std::vector<std::vector<int> >& vertex_coset,
const std::vector<std::vector<int> >& gens,
const std::vector<std::vector<int> >& v_cogens,
const Vect& weights,
std::vector<Mat>& gen_reps,
Vect &origin)
{
//construct coxeter matrix
int coxeter[4][4];
for (int i=0; i<4; ++i) {
coxeter[i][i] = 1;
for (int j=i+1; j<4; ++j) {
coxeter[i][j] = coxeter[j][i] = *(coxeter_utriang++);
}
}
//define cosines bewtween reflection planes
Mat cosine;
for (int i = 0; i<4; ++i) {
for (int j = 0; j<4; ++j) {
cosine[i][j] = cos(M_PI/coxeter[i][j]);
}
}
//define normal vectors, i.e., reflection axes
Mat axis;
for (int i = 0; i<4; ++i) {
for (int j = 0; j<4; ++j) {
axis[i][j] = 0;
}
}
axis[0][0] = 1;
axis[1][0] = cosine[1][0];
axis[1][1] = g_sqrt(1.0f - sqr(axis[1][0]));
axis[2][0] = cosine[2][0];
axis[2][1] = (cosine[2][1] - axis[2][0]*axis[1][0]) / axis[1][1];
axis[2][2] = g_sqrt(1.0f-sqr(axis[2][0])-sqr(axis[2][1]));
axis[3][0] = cosine[3][0];
axis[3][1] = (cosine[3][1] - axis[3][0]*axis[1][0]) / axis[1][1];
axis[3][2] = (cosine[3][2] - axis[3][0]*axis[2][0]
-axis[3][1]*axis[2][1]) / axis[2][2];
axis[3][3] = g_sqrt(1.0f - sqr(axis[3][0]) - sqr(axis[3][1])
-sqr(axis[3][2]));
//sanity check
for (int i = 0; i<4; ++i) {
for (int j = i; j<4; ++j) {
Assert (fabs(inner(axis[i], axis[j]) - fabs(cosine[j][i])) < 1e-6,
"funkay business: axes don't jive with cosines");
}
}
//define orthonormal basis
Mat ortho;
mat_inverse(axis, ortho);
for (int i=0; i<4; ++i) {
/* don't normalize, else origin will be off center
//normalize
float norm = 0;
for (int j=0; j<4; ++j) norm += sqr(ortho[j][i]);
float n = sqrt(norm);
float s = 1 / n;
logger.debug() << "scaling axis " << i << " by " << s |0;
for (int j=0; j<4; ++j) {
ortho[j][i] *= s;
axis [i][j] *= n;
}
*/
//realign others to make angles acute
for (int j = i+1; j<4; ++j) {
float ip = 0;
for (int k=0; k<4; ++k) {
ip += ortho[k][i] * ortho[k][j];
}
if (ip >= -0.00001f) continue; //careful of duoprisms
logger.debug() << "flipping axis " << j |0;
for (int k=0; k<4; ++k) {
ortho[k][j] *= -1;
axis [j][k] *= -1;
}
}
}
Mat verts;
mat_trans(ortho, verts);
//define reflectors
Mat reflectors[4];
for (int letter = 0;letter<4;letter++) {
//swap mirroror row to first
for (int j = 0;j<4;j++) {
ortho[0][j] = axis[letter][j];
for (int i = 0;i<letter;i++) {
ortho[i+1][j] = (i == j)?1:0;
}
for (int i = letter+1;i<4;i++) {
ortho[i][j] = (i == j)?1:0;
}
}
//make reflection matrix
make_ortho(ortho);
for (int i = 0; i<4; ++i) {
for (int j = 0; j<4; ++j) {
reflectors[letter][i][j] = -ortho[0][i] * ortho[0][j];
for (int k = 1;k<4;k++)
reflectors[letter][i][j] += ortho[k][i] * ortho[k][j];
}
}
}
//define matrix representation
gen_reps.resize(gens.size());
for (unsigned j=0; j<gens.size(); ++j) {
const std::vector<int> &word = gens[j];
Mat& g = gen_reps[j];
Mat temp;
g = reflectors[word[0]];
for (unsigned w=1; w<word.size(); ++w) {
mat_mult(g, reflectors[word[w]], temp);
g = temp;
}
}
//define quotient vertices
for (int j=0; j<4; ++j) {
origin[j] = 0;
}
int included[4] = {0,0,0,0};
bool simple_basis = true;
for (unsigned n=0; n<v_cogens.size(); ++n) {
const std::vector<int>& word = v_cogens[n];
if (word.size() > 1) {
simple_basis = false;
break;
}
for (unsigned w=0; w<word.size(); ++w) {
included[word[w]] = 1;
}
}
if (simple_basis) {
//just include gen_reps
for (int i=0; i<4; ++i) {
if (included[i]) continue;
for (int j=0; j<4; ++j) {
origin[j] += weights[i] * verts[i][j];
}
}
} else {
//average over coset
for (unsigned w=0; w<vertex_coset.size(); ++w) {
for (int i=0; i<4; ++i) {
Vect term = verts[i];
const std::vector<int>& word = vertex_coset[w];
for (unsigned t=0; t<word.size(); ++t) { //XXX: backwards?
vect_imul(reflectors[word[t]], term);
}
vect_iadd(origin, term);
}
}
}
normalize(origin);
}
complex hopf_phase (Vect &e) //a 4-vector
{//phase from hopf fibration
float x = e[0]*e[2] + e[1]*e[3];
float y = e[1]*e[2] - e[0]*e[3];
return complex(x, y);
}