-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_tree_preorder_traversal.py
50 lines (37 loc) · 1.44 KB
/
binary_tree_preorder_traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python3
# Binary Tree Preorder Traversal
#
# https://leetcode.com/problems/binary-tree-preorder-traversal/
#
# Given the root of a binary tree, return the preorder traversal of its nodes'
# values.
from typing import List, Optional
from binary_tree import TreeNode
def test():
"""
Run `pytest <this-file > `.
"""
def test_algo(algo):
assert algo(None) == []
assert algo(TreeNode(2)) == [2]
assert algo(TreeNode(2, TreeNode(1), TreeNode(3))) == [2, 1, 3]
assert algo(TreeNode(1, None, TreeNode(3, TreeNode(2), None))) == [1, 3, 2]
# Test all different algorithms/implementations
solution = Solution()
for algo in [solution.dfs_recursive]:
test_algo(algo)
class Solution:
def dfs_recursive(self, root: Optional[TreeNode]) -> List[int]:
"""
Approach: Recursive DFS.
Idea: For every parent node, first visit the parent node itself, then the left child, and then the right child.
Time: O(n): We visit every node in the tree exactly once.
Space: O(1): We don't store any additional data structure besides the output list.
Leetcode: 43 ms runtime, 16.46 MB memory
"""
def traverse(node: Optional[TreeNode]) -> List[int]:
if node is None:
return []
else:
return [node.val] + traverse(node.left) + traverse(node.right)
return traverse(root)