-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_feed_forward_network.py
172 lines (127 loc) · 5.33 KB
/
test_feed_forward_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import random
import tempfile
import unittest
import numpy as np
import numpy.testing as npt
from pydl.feedforwardnetwork import FeedForwardNetwork
from pydl import mathutils
TYPE = "float64"
def clone(n):
n2 = FeedForwardNetwork([9, 9])
n2.ws = [np.copy(w) for w in n.ws]
n2.bs = [np.copy(b) for b in n.bs]
return n2
def err(y):
return mathutils.mean_squared_error(y, np.zeros(y.shape))
class TestFeedForwardNetwork(unittest.TestCase):
def test_grad_ws(self):
n = FeedForwardNetwork([5, 4, 3, 2])
x0 = np.random.uniform(size=5).astype(TYPE)
intermediate_results = {}
y = n.forward_prop(x0, intermediate_results)
t = np.zeros(2).astype(TYPE)
dy = mathutils.mean_squared_error_prime(y, t)
n.back_prop(dy, intermediate_results)
dws = intermediate_results["dws"]
delta = 1e-4
exp_dws = []
for i in range(len(n.ws)):
w = n.ws[i]
exp_dw = np.zeros(w.shape)
for index in np.ndindex(w.shape):
n1 = clone(n)
n2 = clone(n)
n1.ws[i][index] -= delta
n2.ws[i][index] += delta
exp_grad = (err(n2.forward_prop(x0, {})) - err(n1.forward_prop(x0, {}))) / (2 * delta)
exp_dw[index] = exp_grad
exp_dws.append(exp_dw)
for dw, exp_dw in zip(dws, exp_dws):
npt.assert_array_almost_equal(dw, exp_dw, decimal=3)
def test_grad_bs(self):
n = FeedForwardNetwork([4, 7, 2, 3])
x0 = np.random.uniform(size=4).astype(TYPE)
intermediate_results = {}
y = n.forward_prop(x0, intermediate_results)
t = np.zeros(3).astype(TYPE)
dy = mathutils.mean_squared_error_prime(y, t)
n.back_prop(dy, intermediate_results)
dbs = intermediate_results["dbs"]
delta = 1e-4
exp_dbs = []
for i in range(len(n.bs)):
b = n.bs[i]
exp_db = np.zeros(b.shape)
for index in np.ndindex(b.shape):
n1 = clone(n)
n2 = clone(n)
n1.bs[i][index] -= delta
n2.bs[i][index] += delta
exp_grad = (err(n2.forward_prop(x0, {})) - err(n1.forward_prop(x0, {}))) / (2 * delta)
exp_db[index] = exp_grad
exp_dbs.append(exp_db)
for dw, exp_db in zip(dbs, exp_dbs):
npt.assert_array_almost_equal(dw, exp_db, decimal=3)
def test_grad_x(self):
n = FeedForwardNetwork([3, 4, 4, 2])
x0 = np.random.uniform(size=3).astype(TYPE)
intermediate_results = {}
y = n.forward_prop(x0, intermediate_results)
t = np.zeros(2).astype(TYPE)
dy = mathutils.mean_squared_error_prime(y, t)
dx = n.back_prop(dy, intermediate_results)
delta = 1e-4
exp_dx = np.zeros(x0.shape)
for index in np.ndindex(x0.shape):
x0_a = np.copy(x0)
x0_b = np.copy(x0)
x0_a[index] -= delta
x0_b[index] += delta
exp_grad = (err(n.forward_prop(x0_b, {})) - err(n.forward_prop(x0_a, {}))) / (2 * delta)
exp_dx[index] = exp_grad
npt.assert_array_almost_equal(dx, exp_dx, decimal=3)
def test_save_and_load(self):
n = FeedForwardNetwork([2, 3, 4])
n.ws = [np.array([[1, 1],
[0, -1],
[5, -9]]),
np.array([[2, 7, -4],
[0, -1, 1],
[6, 20, -10],
[3, 3, 3, 3]])]
n.bs = [np.array([[0], [0], [1]]),
np.array([[9], [1], [-1], [50]])]
temp_file = tempfile.mkstemp(suffix=".npz")[1]
n.save(temp_file)
n2 = FeedForwardNetwork([])
n2.load(temp_file)
for w, b, w2, b2 in zip(n.ws, n.bs, n2.ws, n2.bs):
npt.assert_equal(w, w2)
npt.assert_equal(b, b2)
os.remove(temp_file)
def test_iris_data_set(self):
def create_data_entry(line):
split = line.strip().split(",")
data_input = np.array([float(str) / 7 for str in split[:-1]]).astype(TYPE)
classes = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
data_target = np.array([float(split[-1] == class_) for class_ in classes]).astype(TYPE)
return data_input, data_target
iris_data_file = open("iris.data")
data_set = [create_data_entry(line) for line in iris_data_file.readlines() if line.strip()]
iris_data_file.close()
random.shuffle(data_set)
training_set = data_set[:-30]
test_set = data_set[-30:]
n = FeedForwardNetwork([4, 50, 3])
learning_rate = 0.5
for _ in range(10000):
training_input, training_target = training_set[random.randrange(0, len(training_set))]
intermediate_results = {}
y = n.forward_prop(training_input, intermediate_results)
dy = mathutils.mse_prime(y, training_target)
n.back_prop(dy, intermediate_results)
n.train(learning_rate, intermediate_results)
errors = [mathutils.mean_squared_error(n.forward_prop(test_input, {}), test_target) for test_input, test_target in test_set]
mean_squared_error = np.mean(np.square(errors))
npt.assert_array_less(mean_squared_error, 0.05)