-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress.py
299 lines (253 loc) · 9.28 KB
/
compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import subprocess
import itertools
import horatio
import pathlib
import pandas
import fslog
import numpy
import json
import time
import sys
import os
def count_runs(column):
gb = itertools.groupby(column.values)
l = len(list(gb))
return l
def count_total_runs(df):
r = 0
for col in df.columns:
r += count_runs(df[col])
return r
def rle(column):
gb = itertools.groupby(column.values)
rl = [(v, len(list(r))) for v, r in gb]
return rl
def export_column(dbname, column):
filename = column.name
for p in " ()<>,.~!@#$%^&*()=:;'\"[]{}":
filename = filename.replace(p, "_")
filename = f"{dbname}.{filename}.rle"
column = column.apply(json.dumps)
with open(filename, "w") as f:
f.write(str(column.dtype))
f.write("\n")
for v, c in rle(column):
f.write(f"{v}\n{c}\n")
return filename
def export_header(df, dbname):
output = f"{dbname}.header"
with open(output, "w") as f:
c_names = df.columns.tolist()
c_names = [json.dumps(c) for c in c_names]
header = ",".join(c_names)
f.write(header)
return output
@horatio.step()
def factorize(df):
fdf = df.copy()
for col in df.columns:
codes, _ = df[col].factorize()
fdf[col] = codes
return fdf
@horatio.step()
def parse(input_file):
ext = pathlib.Path(input_file).suffix
if ext == ".json":
df = pandas.read_json(input_file, lines=True, convert_dates=False)
elif ext == ".csv":
df = pandas.read_csv(input_file, encoding="utf-8", engine="python")
else:
fslog.log(f"ERROR: '{ext}' format not supported")
sys.exit(1)
return df
@horatio.section()
def reorder_rand(df):
return df.sample(frac=1, random_state=1) # shuffling
@horatio.section()
def reorder_lex(df):
order = df.nunique(dropna=False).sort_values().index.to_list()
rdf = df.sort_values(by=order)
return rdf
@horatio.section()
def reorder_nn(df):
mktemp = subprocess.run("mktemp", stdout=subprocess.PIPE, text=True)
fact_file = mktemp.stdout.strip()
output = f"{fact_file}.path"
fdf = factorize(df)
fdf.to_csv(fact_file, header=False, index=False, sep="\t")
os.system(f"./nn.out {fact_file} {output}")
order = numpy.loadtxt(output).astype("int32")
rdf = df.iloc[order]
return rdf
@horatio.section()
def reorder_vns(df, time_limit):
mktemp = subprocess.run("mktemp", stdout=subprocess.PIPE, text=True)
fact_file = mktemp.stdout.strip()
output = f"{fact_file}.path"
fdf = factorize(df)
fdf.to_csv(fact_file, header=False, index=False, sep="\t")
os.system(f"./vns.out {fact_file} {output} {time_limit}")
order = numpy.loadtxt(output).astype("int32")
rdf = df.iloc[order]
return rdf
@horatio.section()
def build_lists(df, output_file):
order = df.nunique(dropna=False).sort_values().index.to_list()
rdf = df.sort_values(by=order)
ldf = pandas.DataFrame()
for col in df.columns:
ldf[col] = rdf.sort_values(by=[col]).index
ldf.T.to_csv(output_file, header=False, index=False, sep="\t")
return ldf
@horatio.section()
def reorder_ml(df):
mktemp = subprocess.run("mktemp", stdout=subprocess.PIPE, text=True)
temp_file = mktemp.stdout.strip()
fact_file = f"{temp_file}.fact"
lists_file = f"{temp_file}.lists"
output = f"{temp_file}.path"
fdf = factorize(df)
fdf.to_csv(fact_file, header=False, index=False, sep="\t")
ldf = build_lists(df, lists_file)
os.system(f"./ml.out {fact_file} {lists_file} {output}")
order = numpy.loadtxt(output).astype("int32")
rdf = df.iloc[order]
return rdf
@horatio.section()
def export_dataframe(df, dbname):
outputs = []
for c in df:
col = df[c]
fout = export_column(dbname, col)
outputs.append(fout)
header = export_header(df, dbname)
outputs.append(header)
return outputs
@horatio.section()
def create_archive(df, output_file, **kwargs):
default = dict()
default["leave_columns"] = False
default["bzip2"] = False
default.update(kwargs)
kwargs.update(default)
tasks = []
dbname = pathlib.Path(output_file).with_suffix("").name
column_files = export_dataframe(df, dbname)
if kwargs["bzip2"]:
commands = [f"bzip2 -9 {fin}" for fin in column_files]
column_files = [f + ".bz2" for f in column_files]
parallel_command = " & ".join(commands) + "; wait"
os.system(parallel_command)
arguments = " ".join(column_files)
os.system(f"tar -cf {output_file} {arguments}")
if not kwargs["leave_columns"]:
os.system(f"rm {arguments}")
@horatio.section()
def run_pipeline(pipeline, df, time_limit):
for p in pipeline:
p = p.lower()
if p == "none":
pass
elif p == "rand":
df = reorder_rand(df)
elif p == "lex":
df = reorder_lex(df)
elif p == "nn":
df = reorder_nn(df)
elif p == "ml":
df = reorder_ml(df)
elif p == "vns":
df = reorder_vns(df, time_limit)
else:
fslog.log(f"ERROR: heuristic '{p}' doesn't exist")
sys.exit(1)
return df
def get_info(input_file, output_file, dfi, dfo):
info = dict()
info["input"] = input_file
info["nrows"] = len(dfi)
info["r_in"] = count_total_runs(dfi)
info["r_opt"] = dfi.nunique(dropna=False).sum()
info["r_ref"] = count_total_runs(reorder_lex(dfi))
info["r_out"] = count_total_runs(dfo)
info["input_size"] = os.stat(input_file).st_size
info["output_size"] = os.stat(output_file).st_size
info["c_ratio"] = info["output_size"] / info["input_size"] * 100
return info
def print_info(info):
r_in, r_out = info["r_in"], info["r_out"]
r_ref, r_opt = info["r_ref"], info["r_opt"]
mega = lambda x: x/(1000**2)
mebi = lambda x: x/(1024**2)
kilo = lambda x: x/1000
fslog.open("Summary")
fslog.log(f"Input file name : {info['input']}")
fslog.log(f"Output file name : {info['output']}")
fslog.log(f"Input file size : {mebi(info['input_size']):.1f}M")
fslog.log(f"Output file size : {mebi(info['output_size']):.1f}M")
fslog.log(f"Number of rows : {kilo(info['nrows']):.0f}K")
fslog.log(f"Pipeline : {info['pipeline']}")
fslog.log(f"Input runs : {r_in}")
fslog.log(f"Output runs : {r_out}")
fslog.log(f"Ref runs : {r_ref}")
fslog.log(f"Best runs : {r_opt}")
fslog.log(f"Improvement (over input) : {r_in/r_out:.4}x")
fslog.log(f"Improvement (over ref) : {r_ref/r_out:.4}x")
fslog.log(f"Improvement (upper bound) : {r_ref/r_opt:.4}x")
fslog.log(f"Compression ratio : {info['c_ratio']:.2f}%")
fslog.log(f"Compression time : {info['time']:.3f} s")
fslog.close()
@horatio.section()
def compress(input_file, **kwargs):
default = dict()
default["input"] = input_file
default["output"] = str(pathlib.Path(input_file).with_suffix(".tar").name)
default["bzip2"] = False
default["time_limit"] = 60
default["leave_columns"] = False
default["pipeline"] = ["none"]
default["shuffle"] = False
default.update(kwargs)
kwargs.update(default)
dfi = parse(kwargs["input"])
if kwargs["shuffle"]:
dfo = dfi.sample(frac=1, random_state=1) # shuffling
else:
dfo = dfi
t = time.time()
dfo = run_pipeline(kwargs["pipeline"], dfo, kwargs["time_limit"])
t = time.time() - t
create_archive(dfo, kwargs["output"], **kwargs)
info = get_info(kwargs["input"], kwargs["output"], dfi, dfo)
info["bzip2"] = kwargs["bzip2"]
info["output"] = kwargs["output"]
info["time"] = t
info["pipeline"] = "+".join(kwargs["pipeline"]).upper()
return info
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description=
"Compressor based on minimizing the cost of Run-Length Encoding",
argument_default=argparse.SUPPRESS)
parser.add_argument("input", metavar="INPUT", type=str,
help="Input file to compress. Supported formats: JSON")
parser.add_argument("-o", "--output", type=str,
help="Output file")
parser.add_argument("-y", "--leave-columns", action="store_true", default=False,
help="Don't delete column files after compression")
parser.add_argument("-s", "--shuffle", action="store_true", default=False,
help="Shuffle the dataset before running the pipeline")
parser.add_argument("-d", "--disable-logs", action="store_true", default=False,
help="Disable logs on the terminal")
parser.add_argument("-b", "--bzip2", action="store_true", default=False,
help="Use bzip2 on RLE columnar files before creating the archive")
parser.add_argument("-t", "--time-limit", type=float, default=60,
help="Heuristic time limit [seconds]. Default is 60")
parser.add_argument("-p", "--pipeline", nargs='+', default=["none"],
choices=["none","lex","rand","ml","nn","vns"],
help="Pipeline of heuristics to run sequentially. Default is 'none'")
args = parser.parse_args()
logs = not args.disable_logs
info = compress(args.input, **vars(args))
fslog.log()
print_info(info)