-
Notifications
You must be signed in to change notification settings - Fork 5
/
macroNotes.tex
5543 lines (5169 loc) · 253 KB
/
macroNotes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%\documentclass[twoside,openright]{report}
\documentclass{book}
\usepackage{amsmath,empheq}
\usepackage{graphicx}
\usepackage{enumitem}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
\DeclarePairedDelimiter\norm{\lVert}{\rVert}%
% Swap the definition of \abs* and \norm*, so that \abs
% and \norm resizes the size of the brackets, and the
% starred version does not.
\makeatletter
\let\oldabs\abs
\def\abs{\@ifstar{\oldabs}{\oldabs*}}
%
\let\oldnorm\norm
\def\norm{\@ifstar{\oldnorm}{\oldnorm*}}
\makeatother
\graphicspath{ {images/} }
\begin{document}
\begin{titlepage}
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}} % Defines a new command for the horizontal lines, change thickness here
\center % Center everything on the page
\text{\LARGE }\\[2cm] % Add some space
\HRule \\[0.6cm]
{ \huge \bfseries M200 Macroeconomics}\\[0.4cm] % Title of your document
\HRule \\[1.5cm]
\text{\LARGE Fran\c{c}ois Stiennon}\\[1.5cm] % Name of your university/college
\text{\LARGE University of Cambridge}\\[1.5cm] % Name of your university/college
{\large \today}\\[3cm] % Date, change the \today to a set date if you want to be precise
\vfill % Fill the rest of the page with whitespace
\end{titlepage}
\tableofcontents{}
\chapter{The Solow Model}
\section{Model Assumptions}
\begin{enumerate}
\item Time is continuous.
\item Demographics. Initially there are $L(0)$ people alive and population grows at rate $n$:
\[
L(t) = L(0)e^{nt}
\]
Normalising $L(0)$ = 1,
\[
L(t) = e^{nt}
\]
We observe that
\[
\frac{\dot{L}(t)}{L(t)} = \frac{ne^{nt}}{e^{nt}} = n
\]
where
\[
\dot{L}(t) = \frac{dL(t)}{dt}
\]
\item Two types of agents: households and firms. Households who own the production factors ($K(t)$ and $L(t)$), and save a constant fraction $s$ of their income. The savings rate $s$ is exogenous and strictly positive ($s>0$).
\item The labour supply in inelastic. There is perfect competition in the good and factor markets. The price of the final good is the numeraire.
\item There is no government ($G = 0$) and the economy is closed ($NX = 0$):
\[
Y = C + I
\]
\item The capital stock $K(t)$ depreciates by a constant fraction $\delta > 0$ in every period. We therefore have:
\[
\dot{K}(t) = I(t) - \delta K(t)
\]
As the economy is closed, investment equals saving $I(t) = S(t)$. Savings are a constant fraction $s$ of income:
\[
S(t) = sY(t)
\]
The remaining income constitutes consumption:
\[
C(t) = (1-s)Y(t)
\]
We can plug in $I(t) = S(t) = sY(t)$:
\[
\dot{K}(t) = sY(t) - \delta K(t)
\]
\end{enumerate}
\section{Production Technology}
There are 3 ways to include technological (TP) progress in the production function:
\begin{enumerate}
\item Hicks-Neutral TP:
\[
F(K(t), L(t)) = \textbf{B(t)}F(K(t), L(t))
\]
\item Labour augmenting TP:
\[
F(K(t), L(t)) = F(K(t), \textbf{A(t)}L(t))
\]
\item Capital augmenting TP:
\[
F(K(t), L(t)) = F(\textbf{C(t)}K(t), L(t))
\]
\end{enumerate}
For Cobb-Douglas technology, the three forms are equivalent:
\begin{equation*}
\begin{split}
F(K(t), L(t)) & = B(t)K(t)^\alpha L(t)^{1-\alpha} = K(t)^\alpha {(A(t)L(t))}^{1-\alpha} = {(C(t)K(t))}^\alpha {L(t)}^{1-\alpha} \\
& = B(t)K(t)^\alpha L(t)^{1-\alpha} = A(t)^{1-\alpha}K(t)^\alpha {L(t)}^{1-\alpha} = C(t)^\alpha{K(t)}^\alpha {L(t)}^{1-\alpha}
\end{split}
\end{equation*}
where
\[
B(t) = A(t)^{1-\alpha} = C(t)^\alpha
\]
\\
We will assume Labour augmenting TP, with a production given by
\[
Y(t) = F[K(t), L(t)] = F[K(t), A(t)L(t)]
\]
where
\begin{enumerate}
\item $A(t)$ corresponds to technological progress.
\item $A(t)L(t)$ is called "effective labour".
\item Technology $A(t)$ grows at rate $g$:
\[
\frac{\dot{A}(t)}{A(t)} = g \iff A(t) = A(0)e^{gt}
\]
\end{enumerate}
Note: Technology must be labour augmenting to ensure the existence of a Balanced Growth Path.\\
\\
Assumptions about the production function:
\begin{enumerate}
\item $F(.)$ exhibits positive and diminishing returns in both factors:
\begin{align*}
\frac{\partial F}{\partial K} &>0 & \frac{\partial ^2F}{\partial K^2} &<0\\
\\
\frac{\partial F}{\partial L} &>0 & \frac{\partial ^2F}{\partial L^2} &<0
\end{align*}
\item $F(.)$ exhibits constant returns to scale:
\[
F(\lambda K(t), \lambda A(t)L(t)) = \lambda F(K(t), A(t)L(t))
\]
\item It satisfies the \textit{inada} conditions:
\[
\lim_{K \to 0}{\frac{\partial F}{\partial K}} = \lim_{L \to 0}{\frac{\partial F}{\partial L}} = \infty
\]
\\
\[
\lim_{K \to \infty}{\frac{\partial F}{\partial K}} = \lim_{L \to \infty}{\frac{\partial F}{\partial L}} = 0
\]
\\
\end{enumerate}
The Cobb Douglas production function:
\[
F(K(t), L(t)) = K(t)^\alpha {(A(t)L(t))}^{1-\alpha}
\]
with $0 <\alpha < 1$, satisfied all of these conditions, which is shown as follows.
\\
\begin{enumerate}
\item Positive and diminishing returns in both factors:
\begin{equation*}
\begin{split}
\frac{\partial F}{\partial K} & = \alpha K(t)^{\alpha - 1} {(A(t)L(t))}^{1-\alpha}\\
& = \alpha \bigg(\frac{1}{K(t)}\bigg)^{1-\alpha} {(A(t)L(t))}^{1-\alpha}\\
& = \alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha} > 0
\end{split}
\end{equation*}
\begin{equation*}
\begin{split}
\frac{\partial ^2F}{\partial K^2} & = \frac{\partial \alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}}{\partial K(t)} \\
& = \alpha \frac{\partial \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}}{\partial \frac{A(t)L(t)}{K(t)}} \frac{\partial \frac{A(t)L(t)}{K(t)}}{\partial K(t)}\\
& = \alpha(1-\alpha)\bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{-\alpha}A(t)L(t)\frac{-1}{K(t)^2}\\
& = - \alpha(1-\alpha)\frac{A(t)L(t)^{1-\alpha}}{K(t)^{2 - \alpha}} < 0
\end{split}
\end{equation*}
\begin{equation*}
\begin{split}
\frac{\partial F}{\partial AL}& = (1-\alpha) K(t)^{\alpha} {(A(t)L(t))}^{-\alpha}\\
& = (1-\alpha) \bigg(\frac{K(t)}{A(t)L(t)}\bigg)^{\alpha} > 0
\end{split}
\end{equation*}
\\
\begin{equation*}
\begin{split}
\frac{\partial ^2F}{\partial (AL)^2} & = \frac{\partial (1-\alpha) K(t)^{\alpha} {(A(t)L(t))}^{-\alpha}}{\partial A(t)L(t)} \\
& = (1-\alpha) K(t)^{\alpha} \frac{\partial {(A(t)L(t))}^{-\alpha}}{\partial A(t)L(t)}\\
& = (1-\alpha) K(t)^{\alpha} (-\alpha) (A(t)L(t))^{-\alpha -1}\\
& = -\alpha(1-\alpha)\frac{K(t)^\alpha}{ A(t)L(t)^{\alpha + 1} } < 0
\end{split}
\end{equation*}
\\
\item Constant returns to scale:
\begin{equation*}
\begin{split}
F(\lambda K(t), \lambda A(t)L(t)) & = (\lambda K(t))^\alpha {(\lambda A(t)L(t))}^{1-\alpha}\\
& = \lambda^\alpha K(t)^\alpha \lambda^{1-\alpha} {( A(t)L(t))}^{1-\alpha}\\
& = \lambda K(t)^\alpha {(A(t)L(t))}^{1-\alpha}\\
& = \lambda F(K(t), A(t)L(t))
\end{split}
\end{equation*}
\item \textit{Inada} conditions:
\[
\lim_{K \to 0}{\frac{\partial F}{\partial K}} = \lim_{K \to 0}{\alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}} = \infty
\]
\\
\[
\lim_{AL \to 0}{\frac{\partial F}{\partial AL}} = \lim_{AL \to 0}{(1-\alpha) \bigg(\frac{K(t)}{A(t)L(t)}\bigg)^{\alpha}} = \infty
\]
\\
\[
\lim_{K \to \infty}{\frac{\partial F}{\partial K}} = \lim_{K \to \infty}{\alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}} = 0
\]
\\
\begin{equation*}
\begin{split}
\lim_{AL \to \infty}{\frac{\partial F}{\partial AL}} = \lim_{AL \to \infty}{ (1-\alpha) \bigg(\frac{K(t)}{A(t)L(t)}\bigg)^{\alpha}} = 0
\end{split}
\end{equation*}
\\
\end{enumerate}
\section{The Firms}
Firms maximise profits whilst taking factor prices as given as there is perfect competition in factor markets:
\[
\pi = \max_{K(t), L(t)} F(K(t), A(t)L(t)) - wL(t) - r^KK(t)
\]
Therefore, factors are paid their marginal products:
\begin{gather*}
\frac{\partial F(K(t), A(t)L(t)) - wL(t) - r^KK(t)}{\partial K(t)} = 0 \\
\iff \frac{\partial F(K(t), A(t)L(t))}{\partial K(t)} - r^K = 0\\
\iff r^K = F'_{K}(K(t), A(t)L(t))
\end{gather*}
\begin{gather*}
\frac{\partial F(K(t), A(t)L(t)) - wL(t) - r^KK(t)}{\partial L(t)} = 0 \\
\iff \frac{\partial F(K(t), A(t)L(t))}{\partial L(t)} - w = 0\\
\iff w = \frac{\partial F(K(t), A(t)L(t))}{\partial A(t)L(t)}\frac{\partial A(t)L(t)}{\partial L(t)}\\
\iff w = A(t)F'_{AL}(K(t), A(t)L(t))
\end{gather*}
\\
\textbf{Euler's Theorem (unproven):} If F(K, AL) is homogenous of degree 1, then $F'_{K}$ and $F'_{AL}$ are homogenous of degree 0.
\\This means that the partial derivatives stay constant if we scale both inputs by some scalar:
\begin{gather*}
r^K = F'_{K}(K(t), A(t)L(t)) = F'_{K}\bigg(\frac{K(t)}{A(t)L(t)}, 1\bigg)\\
w = A(t)F'_{AL}(K(t), A(t)L(t)) = AF'_{AL}\bigg(\frac{K(t)}{A(t)L(t)}, 1\bigg)
\end{gather*}
\\
We can show that this is true for Cobb Douglas technology. For $F'_{K}$:
\\
\[
F'_{K}(K(t), A(t)L(t)) = \alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}
\]
Hence:
\begin{equation*}
\begin{split}
F'_{K}\bigg(\frac{K(t)}{A(t)L(t)}, 1\bigg) & = \alpha \Bigg( \frac{1}{ \frac{K(t)}{A(t)L(t)}}\Bigg)^{1 - \alpha}\\
& = \alpha \bigg(\frac{A(t)L(t)}{K(t)}\bigg)^{1 - \alpha}\\
& = F'_{K}(K(t), A(t)L(t))
\end{split}
\end{equation*}
\\
Similarly for $F'_{AL}$:
\[
F'_{AL}(K(t), A(t)L(t)) = (1-\alpha) \bigg(\frac{K(t)}{A(t)L(t)}\bigg)^{\alpha}
\]
Hence:
\begin{equation*}
\begin{split}
F'_{AL}\bigg(\frac{K(t)}{A(t)L(t)}, 1\bigg) & = (1-\alpha) \Bigg(\frac{\frac{K(t)}{A(t)L(t)}}{1}\Bigg)^{\alpha}\\
& = (1-\alpha) \bigg(\frac{K(t)}{A(t)L(t)}\bigg)^{\alpha}\\
& = F'_{AL}(K(t), A(t)L(t))
\end{split}
\end{equation*}
\\
\section{Balanced Growth Path}
A \textbf{Balanced Growth Path} (BGP) is an equilibrium path (or steady-state) for capital $K_t$, output $Y_t$, consumption $C_t$, wages $w_t$ and the return on capital $r^K$, such that these variables grow at a \textbf{constant rate}:
\begin{align*}
\frac{\dot{K}(t)}{K(t} &= g_K & \frac{\dot{Y}(t)}{Y(t} &= g_Y & \frac{\dot{C}(t)}{C(t} &= g_C
\end{align*}
\begin{align*}
\frac{\dot{w}(t)}{w(t} &= g_w & \frac{\dot{r^K}(t)}{r^K(t} &= g_{r^K}
\end{align*}
\\
These properties are an accurate characterisation of most industrialised economies; all variables grow at a constant rate in every period and therefore grow exponentially over time. Can we find a balanced growth path in the Solow model? We start with the law of motion of capital:
\begin{equation*}
\begin{split}
\dot{K}(t) & = sF(K(t), A(t)L(t)) - \delta K(t)\\
\implies \frac{\dot{K}(t)}{K(t)} & = s\frac{F(K(t), A(t)L(t))}{K(t)} - \delta\\
\implies g_K + \delta & = s\frac{F(K(t), A(t)L(t))}{K(t)}\\
\implies g_K + \delta & = sF\bigg(1, \frac{A(t)L(t)}{K(t)} \bigg) \text{ (by constant returns to scale)}
\end{split}
\end{equation*}
\\
By assumption, $g_K$ and $\delta$ are constant along the balanced growth path (in every period). This implies that $\frac{A(t)L(t)}{K(t)}$ is constant in the balanced growth path. Therefore:
\begin{gather*}
\frac{A(t)L(t)}{K(t)} = const\\
\implies \ln\bigg(\frac{A(t)L(t)}{K(t)}\bigg) = \ln(const)\\
\implies \ln(A(t)) + \ln{L(t)} - \ln{K(t)} = \ln(const)\\
\implies \frac{\partial \ln(A(t)) + \ln{L(t)} - \ln{K(t)}}{\partial t} = \frac{\partial \ln(const)}{\partial t}\\
\implies \frac{\partial \ln(A(t)}{\partial t} + \frac{\partial \ln(L(t)}{\partial t} - \frac{\partial \ln(K(t)}{\partial t} = 0\\
\end{gather*}
Using the fact that $\frac{\partial \ln(X(t)}{\partial t} = \frac{\dot{X}(t)}{X(t}$, since $\frac{\partial \ln(X(t)}{\partial t} = \frac{\partial \ln(X(t)}{\partial X(t)}\frac{\partial X(t)}{\partial t} = \frac{1}{X(t)}\dot{X}(t) = \frac{\dot{X}(t)}{X(t}$:
\[
\frac{\dot{A}(t)}{A(t)} + \frac{\dot{L}(t)}{L(t} - \frac{\dot{K}(t)}{K(t} = 0\\
\]
We recall that by assumption, $\frac{\dot{A}(t)}{A(t)} = g$ and $\frac{\dot{L}(t)}{L(t)} = n$, therefore:
\begin{gather*}
g + n - g_K = 0\\
\implies g_K = g + n
\end{gather*}
We have found that in the balanced growth path, the capital stock $K(t)$ grows at a constant rate $g + n$. We now use this fact to derive growth rates of the other variables.
\begin{equation*}
\begin{split}
Y(t) & = F(K(t), A(t)L(t))\\
\implies \frac{Y(t)}{K(t)} & = F\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg) \text{ (by constant returns to scale)}\\
\end{split}
\end{equation*}
\\
As $\frac{A(t)L(t)}{K(t)}$ is constant along the balanced growth path, so is $F\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg)$. Therefore, $\frac{Y(t)}{K(t)}$ is also constant. $Y(t)$ must grow at the same rate as $K(t)$ to keep $\frac{Y(t)}{K(t)}$ constant:
\[
g_Y = g_K = g + n
\]
\\
We now derive the growth rate of consumption.
\begin{equation*}
\begin{split}
C(t) = (1-s)Y(t)\\
\implies \frac{C(t)}{Y(t)} = 1 - s
\end{split}
\end{equation*}
\\
As $s$ is constant along the balanced growth path, so is $\frac{C(t)}{Y(t)}$. Therefore, $C(t)$ must grow at the same rate as $Y(t)$ (and therefore $K(t)$) to keep $\frac{C(t)}{Y(t)}$ constant:
\[
g_C = g_Y = g_K = g + n
\]
\\
We now derive the growth rate of wages.
\begin{equation*}
\begin{split}
w(t) = A(t)F'_L(K(t), A(t)L(t))\\
\end{split}
\end{equation*}
\\
As the partial derivative of the production function is homogenous of degree 0 (Euler's Theorem):
\begin{equation*}
\begin{split}
w(t) = A(t)F'_L\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg)\\
\end{split}
\end{equation*}
\\
Since $\frac{A(t)L(t)}{K(t)}$ is constant along the balanced growth path, so is $F'_L\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg)$. Therefore, $w(t)$ grows at the same rate as $A(t)$:
\[
g_w = n
\]
\\
We now derive the growth rate of the return on capital.
\begin{equation*}
\begin{split}
r^K &= F'_{K}(K(t), A(t)L(t))\\
& = F'_{K}\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg) \text{ (by Euler's Theorem)}
\end{split}
\end{equation*}
\\
Since $\frac{A(t)L(t)}{K(t)}$ is constant along the balanced growth path, so is $F'_K\bigg(1, \frac{A(t)L(t)}{K(t)}\bigg)$. Therefore, $r^K$ is also constant:
\[
g_{r^K} = 0
\]
\\
Our assumptions have allowed us to derive a growth path in which all of the variables grow at a constant rate.
\\
\section{Dynamics to the Balanced Growth Path}
We start by writing the production function in intensive form:
\[
\widetilde{y}(t) = \frac{Y(t)}{A(t)L(t)} = \frac{F(K(t), A(t)L(t))}{A(t)L(t)} = F\bigg(\frac{K(t)}{A(t)L(t)}, 1\bigg) = f(\widetilde{k}(t))
\]
where $\widetilde{y}(t)$ is output per efficient unit of labour and $\widetilde{k}(t)$ is capital per efficient unit of labour. We will show that the economy converges to the balanced growth path in equilibrium. On one hand we have:
\begin{gather*}
\dot{K}(t) = sY(t) - \delta K(t)\\
\implies \frac{\dot{K}(t)}{A(t)L(t)} = s\frac{Y(t)}{A(t)L(t)} - \delta \frac{K(t)}{A(t)L(t)}\\
\implies \frac{\dot{K}(t)}{A(t)L(t)} = sf(\widetilde{k}(t)) - \delta \widetilde{k}(t)
\end{gather*}
\\
On the other hand we have:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) = \frac{d \widetilde{k}(t)}{dt} = \frac{d \frac{K(t)}{A(t)L(t)}}{dt} & = \frac{ \frac{d K(t)}{dt} A(t)L(t) - K(t)\frac{d A(t)L(t)}{dt} }{(A(t)L(t))^2}\\
& = \frac{ \dot{K}(t)A(t)L(t) - K(t)\Big(\frac{dA(t)}{dt}L(t) + A(t)\frac{dL(t)}{dt} \Big)}{(A(t)L(t))^2}\\
& = \frac{ \dot{K}(t)A(t)L(t) - K(t)\Big(\dot{A}(t)L(t) + A(t)\dot{L}(t) \Big)}{(A(t)L(t))^2}\\
& = \frac{\dot{K}(t)} {A(t)L(t)} - \frac{K(t)}{A(t)L{t}}\bigg(\frac{\dot{A}(t)L(t)}{A(t)L(t)} + \frac{ A(t)\dot{L}(t)} {A(t)L(t)}\bigg)\\
& = \frac{\dot{K}(t)} {A(t)L(t)} - \widetilde{k}(t)\bigg(\frac{\dot{A}(t)}{A(t)} + \frac{\dot{L}(t)} {L(t)}\bigg)\\
& = \frac{\dot{K}(t)} {A(t)L(t)} - \widetilde{k}(t)\big(g + n\big)\\
& = sf(\widetilde{k}(t)) - \delta \widetilde{k}(t) - \widetilde{k}(t)\big(g + n\big) \text{ (from the above expression)}\\
\implies \dot{\widetilde{k}}(t) & = sf(\widetilde{k}(t)) - \big(n + g + \delta\big)\widetilde{k}(t)
\end{split}
\end{equation*}
\\
\\
We can see that the change in capital per effective unit of labour equals the fraction of output per effective unit of about that is saved, minus the fraction of capital that depreciates in ever period.
\\
\begin{center}
\includegraphics[scale=0.7]{dynamic}
\end{center}
We observe that :
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) = sf(\widetilde{k}(t)) - \big(n + g + \delta\big)\widetilde{k}(t)\\
\implies \gamma_{\widetilde{k}} = \frac{\dot{\widetilde{k}}(t)}{\widetilde{k}(t)} = s
\frac{f(\widetilde{k}(t))}{\widetilde{k}} - (n + \delta + g)
\end{split}
\end{equation*}
\\
where $\gamma_{\widetilde{k}}$ is the growth rate of capital per effective unit of labour. By constant returns to scale, we have:
\begin{equation*}
\begin{split}
\gamma_{\widetilde{k}} = \frac{\dot{\widetilde{k}}(t)}{\widetilde{k}(t)} & = s \frac{F(\widetilde{k}(t), 1)}{\widetilde{k}} - (n + \delta + g)\\
& = sF\bigg(1, \frac{1}{\widetilde{k}(t)}\bigg) - (n + \delta + g)\\
\implies \frac{\partial \gamma_{\widetilde{k}}}{\partial \widetilde{k}(t)} & = s \frac{\partial F\bigg(1, \frac{1}{\widetilde{k}(t)}\bigg)}{\partial \widetilde{k}(t)}\\
& = s \frac{\partial F\bigg(1, \frac{1}{\widetilde{k}(t)}\bigg)}{\partial \frac{1}{\widetilde{k}(t)}} \frac{\partial \frac{1}{\widetilde{k}(t)}}{\partial \widetilde{k}(t)}\\
& = s F'_L \frac{-1}{\widetilde{k}(t)^2}\\
& = -s F'_L \frac{1}{\widetilde{k}(t)^2} < 0
\end{split}
\end{equation*}
\\
Moreover, by l'Hopital rule:
\[
\lim_{\widetilde{k}(t) \to 0}{ \bigg[\frac{sf(\widetilde{k}(t)) }{\widetilde{k}} \bigg]} = \lim_{\widetilde{k}(t) \to 0}{ \bigg[\frac{sf'(\widetilde{k}(t)) }{1} \bigg]} = \infty
\]
\[
\lim_{\widetilde{k}(t) \to \infty}{ \bigg[\frac{sf(\widetilde{k}(t)) }{\widetilde{k}} \bigg]} = \lim_{\widetilde{k}(t) \to \infty}{ \bigg[\frac{sf'(\widetilde{k}(t)) }{1} \bigg]} = 0
\]
\\
Therefore the model is globally stable and there is a unique $\widetilde{k}(t)^*$ such that:
\begin{equation*}
\begin{split}
\frac{\dot{\widetilde{k}}(t)}{\widetilde{k}(t)} = 0 \implies \frac{sf(\widetilde{k}(t)^*)}{\widetilde{k}(t)^*} = n + g + \delta
\end{split}
\end{equation*}
\begin{center}
\includegraphics[scale=0.3]{converg}
\end{center}
\begin{enumerate}
\item If $\widetilde{k}(t) < \widetilde{k}(t)^*$, saving/investment exceeds depreciation, thus capital per efficient unit of labour grows: $\gamma_{\widetilde{k}} > 0$.
\item If $\widetilde{k}(t) > \widetilde{k}(t)^*$, saving/investment is lower than depreciation, thus capital per efficient unit of labour decreases: $\gamma_{\widetilde{k}} < 0$.
\item As $f(\widetilde{k}(t))$ satisfies continuity, concavity and the Inada conditions, by the Intermediate Value Theorem (IVT) there must exist an unique $\widetilde{k}(t)^*$ such that $sf(\widetilde{k}(t)^*) = (n + g + \delta)\widetilde{k}(t)^*$.
\item In the Balanced Growth Path equilibrium, capital, output and consumption per efficient unit of labour are constant: $\gamma_{\widetilde{k}} = \gamma_{\widetilde{y}} = \gamma_{\widetilde{c}} = 0$.
\end{enumerate}We now use these results to derive the growth rates of aggregate and per capita variables.
\begin{equation*}
\begin{split}
\widetilde{k}(t) & = \frac{K(t)}{A(t)L(t)}\\
\implies K(t) & = A(t)L(t)\widetilde{k}(t)\\
\implies \ln{K(t)} & = \ln{\Big(A(t)L(t)\widetilde{k}(t)}\Big)\\
\implies \ln{K(t)} & = \ln{A(t)} + \log{L(t)} + \ln{\widetilde{k}(t)}\\
\implies \frac{\partial \ln{K(t)}}{\partial t} & = \frac{\partial \ln{A(t)}}{\partial t} + \frac{\partial \ln{L(t)}}{\partial t} + \frac{\partial \ln{\widetilde{k}(t)}}{\partial t}\\
\implies \frac{\dot{K}(t)}{K(t)} & = \frac{\dot{A}(t)}{A(t)} + \frac{\dot{L}(t)}{L(t)} + \frac{\dot{\widetilde{k}}(t)}{\widetilde{k}(t)}\\
\implies \frac{\dot{K}(t)}{K(t)} & = g + n + \gamma_{\widetilde{y}}\\
\implies \frac{\dot{K}(t)}{K(t)} & = g + n \text{ (as $\gamma_{\widetilde{y}} = 0$ in the BGP)}\\
\end{split}
\end{equation*}
\\
We find that aggregate output grows at rate g + n. Similarly, we derive the growth rate of output per capita:
\begin{equation*}
\begin{split}
k(t) = \widetilde{k}(t)A(t) & = \frac{K(t)}{L(t)} \text{ (capital per unit of labour)}\\
\implies \ln{k(t)} & = \ln{\Big(\widetilde{k}(t)A(t)\Big)}\\
\implies \ln{k(t)} & = \ln{\widetilde{k}(t)} + \ln{A(t)}\\
\implies \frac{\partial \ln{k(t)}}{\partial t} & = \frac{\partial \Big(\widetilde{k}(t) + \ln{A(t)}\Big)}{\partial t}\\
\implies \frac{\partial \ln{k(t)}}{\partial t} & = \frac{\partial \widetilde{k}(t)}{\partial t} + \frac{\partial \ln{A(t)}}{\partial t}\\
\implies \frac{\dot{k}(t)}{k(t)} & = \frac{\dot{\widetilde{k}}(t)}{\widetilde{k}(t)} + \frac{\dot{A}(t)}{A(t)}\\
\implies \frac{\dot{k}(t)}{k(t)} & = \gamma_{\widetilde{y}} + g\\
\implies \frac{\dot{k}(t)}{k(t)} & = g \text{ (as $\gamma_{\widetilde{y}} = 0$ in the BGP)}
\end{split}
\end{equation*}
\\
We find that output per capita grows at rate g (the rate of technological progress). Furthermore, changes in the parameters of the model such as $s$, $n$ or $\delta$ will affect the levels of $k^*$, $y^*$ and $c^*$ as they shift the depreciation curve or the investment per unit of effective labour function. However, they do not affect the growth rates of these variables is the balanced growth path.
\section{Golden Rule and Dynamic Inefficiency}
The \textbf{golden rule saving rate} maximises consumption in the long run (balanced growth path). We maximise consumption per unit of labour $C(t)$ with respect to $s$, which is equivalent to maximising $\frac{C(t)}{A(t)L(t)} = \widetilde{c}(t)$ with respect to $s$:
\[
s = \arg\max_{s} \widetilde{c}(t)^*
\]
\[
\text{ where } \widetilde{c}(t)^* = (1 - s)f(\widetilde{k}(t)^*) = f(\widetilde{k}(t)^*) - (n + g + \delta )\widetilde{k}^*
\]
\\
We differentiate $\widetilde{c}(t)^*$ with respect to $s$:
\begin{equation*}
\begin{split}
\frac{\partial \widetilde{c}(t)^*}{\partial s} & = \frac{\partial f(\widetilde{k}(t)^*) - (n + g + \delta )\widetilde{k}(t)^*}{\partial s} = 0\\
& \implies \frac{\partial f(\widetilde{k}(t)^*)}{\partial s} - (n + g + \delta )\frac{\partial \widetilde{k}(t)^*}{\partial s} = 0\\
& \implies \frac{\partial f(\widetilde{k}(t)^*)}{\partial \widetilde{k}(t)^*}\frac{\partial \widetilde{k}(t)^*}{\partial s} - (n + g + \delta )\frac{\partial \widetilde{k}(t)^*}{\partial s} = 0\\
& \implies \bigg(\frac{\partial f(\widetilde{k}(t)^*)}{\partial \widetilde{k}(t)^*} - (n + g + \delta )\bigg)\frac{\partial \widetilde{k}(t)^*}{\partial s} = 0\\
& \implies \frac{\partial f(\widetilde{k}(t)^*)}{\partial \widetilde{k}(t)^*} - (n + g + \delta ) = 0\\
& \implies f'(\widetilde{k}(t)^*_{GR}) - (n + g + \delta ) = 0\\
\end{split}
\end{equation*}
\begin{center}
\includegraphics[scale=0.5]{golden}
\end{center}
We find that for the golden rule savings rate, the capital stock is such that the marginal product of capital is equal to the depreciation rate of capital $n + g + \delta$. Given $\widetilde{k}(t)^*_{GR}$ we can use $sf(\widetilde{k}(t)^*_{GR}) = (n + g + \delta)\widetilde{k}(t)^*_{GR}$ to find $s_{GR}$:
\begin{equation*}
\begin{split}
sf(\widetilde{k}(t)^*_{GR}) = (n + g + \delta)\widetilde{k}(t)^*_{GR}\\
\implies s_{GR} = (n + g + \delta)\frac{\widetilde{k}(t)^*_{GR}}{f\big(\widetilde{k}(t)^*_{GR}\big)}
\end{split}
\end{equation*}
\\
\\
If $s < s_{GR}$, then increases in $s$ would increase $\widetilde{c}(t)^*$ in the long run:
\begin{center}
\includegraphics[scale=0.5]{increase}
\end{center}
If $s > s_{GR}$, then increases in $s$ would decrease $\widetilde{c}(t)^*$ in the long run (the economy is dynamically inefficient):
\begin{center}
\includegraphics[scale=0.5]{decrease}
\end{center}
We can represent the relationship between the savings rate and consumption per unit of effective labour in the balanced growth path as follows:
\begin{center}
\includegraphics[scale=0.3]{savings}
\end{center}
\section{Effect of a Change in the Savings Rate}
Suppose that initially the economy is in its balanced growth path equilibrium, $\widetilde{k}(t)^*_1$. We recall the fundamental equation*:
\[
\dot{\widetilde{k}}(t) = sf(\widetilde{k}) - (n + g + \delta)\widetilde{k}(t)
\]
\begin{enumerate}
\item If the savings rate $s$ increases, investment exceeds depreciation:
\begin{equation*}
\begin{split}
sf(\widetilde{k}(t)^*_1) & > (n + g + \delta)\widetilde{k}(t)^*_1\\
\implies \dot{\widetilde{k}}(t) = sf(\widetilde{k}) & - (n + g + \delta)\widetilde{k}(t) > 0
\end{split}
\end{equation*}
\item The capital stock $\widetilde{k}$ grows until it reaches a new higher balanced growth path.
\item Along the transition, $\widetilde{k}$ and $\widetilde{y}$ rises, but the their growth rates slow down.
\item In the new balanced growth path, $\widetilde{k}$, $\widetilde{y}$ and $\widetilde{c}$ are constant. Per capital variables $\frac{K}{L}$, $\frac{Y}{L}$ and $\frac{C}{L}$ grow at rate $g$.
\end{enumerate}
We can plot the evolution of variables over time following an increase in the savings rate as follows:
\begin{center}
\includegraphics[scale=0.6]{evol}
\end{center}
\section{Speed of Convergence}
The transition speed towards the steady state as
\begin{enumerate}
\item If it is rapid, we can focus on the steady state.
\item If it is slow, we need to consider transitional dynamics (such as hysteresis) to evaluate long-term outcomes.\\
\end{enumerate}
Assuming Cobb-Douglas technology:
\begin{equation*}
\begin{split}
f(\widetilde{k}(t)) & = \widetilde{y} = \frac{Y(t)}{A(t)L(t)} = \frac{K(t)^\alpha\big(A(t)L(t)\big)^{1-\alpha}}{A(t)L(t)} = \frac{K(t)^\alpha}{\big(A(t)L(t)\big)^\alpha} = \widetilde{k}(t)^\alpha
\end{split}
\end{equation*}
\\
We use this to rewrite the derivative of capital per effective unit of labour.
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) & = sf(\widetilde{k}(t)) - \big(n + g + \delta\big)\widetilde{k}(t)\\
\implies \dot{\widetilde{k}}(t) & = s\widetilde{k}(t)^\alpha - \big(n + g + \delta\big)\widetilde{k}(t)\\
\end{split}
\end{equation*}
\\
We take the first order Taylor approximation of this function around $\widetilde{k}^*$ to evaluate the speed of convergence around the steady state. We define the first order Taylor approximation as:
\begin{equation*}
\begin{split}
g(x) \Big\rvert_{x^*} = g(x^*) + g'(x^*)(x - x^*)
\end{split}
\end{equation*}
We apply this to $\dot{\widetilde{k}}(t)$ as follows:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*} & = \dot{\widetilde{k}}(t)^* + \frac{\partial \dot{\widetilde{k}}(t)^*}{\partial \widetilde{k}(t)^*}\Big(\widetilde{k}(t) - \widetilde{k}(t)^*\Big)\\
\end{split}
\end{equation*}
We can write $\dot{\widetilde{k}}(t)^*$ as:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t)^* = s(\widetilde{k}(t)^*)^\alpha - \big(n + g + \delta\big)\widetilde{k}(t)^*
\end{split}
\end{equation*}
Which we can differentiate with respect to $\widetilde{k}(t)^*$:
\begin{equation*}
\begin{split}
\frac{\partial \dot{\widetilde{k}}(t)^*}{\partial \widetilde{k}(t)^*} = s\alpha(\widetilde{k}(t)^*)^{\alpha -1} - \big(n + g + \delta\big)
\end{split}
\end{equation*}
We can now plug this into the Taylor approximation as follows:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*} = s(\widetilde{k}(t)^*)^\alpha - \big(n + g + \delta\big)\widetilde{k}(t)^* + \Big(s\alpha(\widetilde{k}(t)^*)^{\alpha -1} - \big(n + g + \delta\big)\Big)\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) \\
\end{split}
\end{equation*}
\\
Furthermore, in the steady state:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t)^* = s(\widetilde{k}(t)^*)^\alpha - \big(n + g + \delta\big)\widetilde{k}(t)^* &= 0\\
\implies s(\widetilde{k}(t)^*)^\alpha & = \big(n + g + \delta\big)\widetilde{k}(t)^*\\
\implies s\frac{s(\widetilde{k}(t)^*)^\alpha}{\widetilde{k}(t)^*} & = n + g + \delta\\
\implies s(\widetilde{k}(t)^*)^{\alpha - 1} & = n + g + \delta\\
\implies \alpha s(\widetilde{k}(t)^*)^{\alpha - 1} & = \alpha(n + g + \delta)
\end{split}
\end{equation*}
\\
Therefore, we can rewrite $\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*}$ without the first term, since $\dot{\widetilde{k}}(t)^* = 0$:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*} = \Big(s\alpha(\widetilde{k}(t)^*)^{\alpha -1} - \big(n + g + \delta\big)\Big)\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) \\
\end{split}
\end{equation*}
\\
We now plug in $\alpha s(\widetilde{k}(t)^*)^{\alpha - 1} = \alpha(n + g + \delta)$:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*} & = \Big(\alpha(n + g + \delta) - \big(n + g + \delta\big)\Big)\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg)\\
& = (\alpha - 1)(n + g + \delta)\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) \\
& = - (1 - \alpha)(n + g + \delta)\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) \\
\end{split}
\end{equation*}
\\
Which we can now rewrite as:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) \Big\rvert_{\widetilde{k}(t)^*} = - \beta\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) \\
\end{split}
\end{equation*}
\\
where $\beta = (1 - \alpha)(n + g + \delta)$. We now solve this differential equation. We re-write it as:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) = - \beta \widetilde{k}(t) + \beta \widetilde{k}(t)^* \\
\end{split}
\end{equation*}
\\
This differential equation is in the form $\dot{x}(t) = ax(t) + b$. We first find the particular solution:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) = - \beta \widetilde{k}(t) + \beta \widetilde{k}(t)^* = 0 \\
\implies - \beta\bigg(\widetilde{k}(t) - \widetilde{k}(t)^*\bigg) = 0\\
\implies \widetilde{k}(t) - \widetilde{k}(t)^* = 0\\
\implies \widetilde{k}(t)^P = \widetilde{k}(t)^*
\end{split}
\end{equation*}
\\
We then find the complementary solution. We solve:
\begin{equation*}
\begin{split}
\dot{\widetilde{k}}(t) = - \beta \widetilde{k}(t) = 0\\
\implies \widetilde{k}(t)^H = Ce^{-\beta t}
\end{split}
\end{equation*}
\\
We combine the two solutions to express the general solution:
\begin{equation*}
\begin{split}
\widetilde{k}(t)^G &= \widetilde{k}(t)^H + \widetilde{k}(t)^P\\
&= Ce^{-\beta t} + \widetilde{k}(t)^*
\end{split}
\end{equation*}
\\
We need to pin down C. W notice that:
\begin{equation*}
\begin{split}
\widetilde{k}(0) &= Ce^{-\beta 0} + \widetilde{k}(t)^*\\
\implies \widetilde{k}(0) & = C + \widetilde{k}(t)^*\\
\implies C &= \widetilde{k}(0) - \widetilde{k}(t)^*
\end{split}
\end{equation*}
\\
We can plug this into the general solution:
\begin{equation*}
\begin{split}
\widetilde{k}(t) &= \big(\widetilde{k}(0) - \widetilde{k}(t)^*\big)e^{-\beta t} + \widetilde{k}(t)^*\\
&= \widetilde{k}(0)e^{-\beta t} - \widetilde{k}(t)^*e^{-\beta t} + \widetilde{k}(t)^*\\
&= \widetilde{k}(0)e^{-\beta t} + (1 - e^{-\beta t})\widetilde{k}(t)^*\\
\end{split}
\end{equation*}
\\
We define $t = t_{half}$ such that:
\begin{equation*}
\begin{split}
\widetilde{k}(t_{half}) - \widetilde{k}(0) = \frac{\widetilde{k}(t)^* - \widetilde{k}(0)}{2} \\
\end{split}
\end{equation*}
\\
where $t_{half}$ is the time it takes for capital to reach the half-way point between it's initial level $\widetilde{k}(0)$ and the steady-state $\widetilde{k}(t)^*$. It is an indication of the speed of convergence. We can solve for $t_{half}$:
\begin{equation*}
\begin{split}
\widetilde{k}(0)e^{-\beta t_{half}} + (1 - e^{-\beta t_{half}})\widetilde{k}(t)^* - \widetilde{k}(0) &= \frac{\widetilde{k}(t)^* - \widetilde{k}(0)}{2} \\\
\implies (1 - e^{-\beta t_{half}})\widetilde{k}(t)^* + \widetilde{k}(0)e^{-\beta t_{half}} - \widetilde{k}(0) &= \frac{\widetilde{k}(t)^* - \widetilde{k}(0)}{2} \\
\implies (1 - e^{-\beta t_{half}})\widetilde{k}(t)^* + (e^{-\beta t_{half}} - 1)\widetilde{k}(0) &= \frac{\widetilde{k}(t)^* - \widetilde{k}(0)}{2} \\
\implies (1 - e^{-\beta t_{half}})\widetilde{k}(t)^* - (1 - e^{-\beta t_{half}})\widetilde{k}(0) &= \frac{\widetilde{k}(t)^* - \widetilde{k}(0)}{2} \\
\implies (1 - e^{-\beta t_{half}})\Big(\widetilde{k}(t)^* - \widetilde{k}(0)\Big) &= \frac{1}{2}\Big( \widetilde{k}(t)^* - \widetilde{k}(0) \Big) \\
\implies (1 - e^{-\beta t_{half}}) &= \frac{1}{2}\\
\implies - e^{-\beta t_{half}} &= \frac{-1}{2}\\
\implies e^{-\beta t_{half}} &= \frac{1}{2}\\
\implies -\beta t_{half} &= \ln{\frac{1}{2}}\\
\implies -\beta t_{half} &= \ln{1} - \ln{2}\\
\implies -\beta t_{half} &= - \ln{2}\\
\implies \beta t_{half} &= \ln{2}\\
\implies t_{half} &= \frac{\ln{2}}{\beta}\\
\end{split}
\end{equation*}
\\
An increase in $\beta$ leads to a decrease in the time it takes for capital to reach the half-way point, and therefore an increase in the speed of convergence. We note that $\beta = (1 - \alpha)(n + g + \delta)$, which determines the speed of convergence, does not depend on the savings rate $s$. In the United States, $\alpha = \frac{1}{3}$, $n = 0.01$, $\delta = 0.06$ and $g = 0.02$. Therefore, $\beta = 0.0533$ and $t_{half} = 13.125$.
\section{Picketty (2014)}
\begin{enumerate}
\item Piketty's first law of capitalism. Capital's share of national income is (by definition):
\begin{equation*}
\begin{split}
\alpha_{K} = r^K \frac{K}{Y} \\
\end{split}
\end{equation*}
\\
\item Piketty's second law of capitalism. In the long run the capital-to-output ratio is (by theory):
\begin{equation*}
\begin{split}
\frac{K}{Y} &= \frac{s}{g} \\
\implies \alpha_{K} &= r^K \frac{s}{g}\\
\end{split}
\end{equation*}
\\
Therefore, if the rate of technological progress $g$ falls to 0, then capital's share of national income $\alpha_{K}$ goes to infinity:
\begin{equation*}
\begin{split}
\lim_{g \to 0}{\alpha_{K}} = \lim_{g \to 0}{ r^K \frac{s}{g} } = \infty
\end{split}
\end{equation*}
\\
If $g$ declines to zero, then capital's share of income would increase explosively.
\item Piketty's key observation:
\begin{equation*}
\begin{split}
r^K > g
\end{split}
\end{equation*}
The rental rate of capital is larger than the long run growth rate and rate of technological growth $g$.
\end{enumerate}
\section{Piketty's model}
We consider a standard solow model with $Y(t) = C(t) + I(t)$, $Y(t) = F(K(t), A(t)L(t))$ and $I(t) = sY(t)$. We write the law of motion of capital:
\begin{equation*}
\begin{split}
\dot{K}(t) &= I(t) - \delta K(t)\\
\implies \dot{K}(t) &= sY(t) - \delta K(t)\\
\implies \frac{\dot{K}(t)}{K(t)} &= \frac{sY(t) - \delta K(t)}{K(t)}\\
\implies \frac{\dot{K}(t)}{K(t)} &= s\frac{Y(t)}{K(t)} - \delta
\end{split}
\end{equation*}
Along the Balanced Growth Path, capital, output and technology grows at a constant growth rate: $\frac{\dot{K}(t)}{K(t)} = g_K = g_A + n = g$. Therefore,
\begin{equation*}
\begin{split}
g = s\frac{Y(t)}{K(t)} - \delta \\
\implies g + \delta = s\frac{Y(t)}{K(t)}\\
\implies \frac{g + \delta}{s} = \frac{Y(t)}{K(t)}\\
\implies \frac{K(t)}{Y(t)} = \frac{s}{g + \delta}
\end{split}
\end{equation*}
We find that as the rate of technological progress $g$ falls to 0, capital's share of national income $\frac{K(t)}{Y(t)}$ increases. However, there is a limit on to how large the ratio can grow. For example, if $g = 0$, $s = 0.24$ and $\delta = 0.08$, then:
\begin{equation*}
\begin{split}
\Big(\frac{K(t)}{Y(t)}\Big)_{MAX} = \frac{0.24}{0.08} = 3 \\
\end{split}
\end{equation*}
\\
We now define:
\begin{equation*}
\begin{split}
\widetilde{I}(t) = \widetilde{s}\widetilde{Y}(t) &= \widetilde{s}\Big(F\big(K(t), A(t)L(t)\big) - \delta K(t)\Big)\\
&= \widetilde{s}F\big(K(t), A(t)L(t)\big) - \widetilde{s}\delta K(t)\\
\end{split}
\end{equation*}
where
\begin{equation*}
\begin{split}
\widetilde{Y}(t) &= F\big(K(t), A(t)L(t)\big) - \delta K(t)\\
\implies \widetilde{Y}(t) &= Y(t) - \delta K(t)
\end{split}
\end{equation*}
\\
and similarly we have:
\begin{equation*}
\begin{split}
\widetilde{I}(t) &= I(t) - \delta K(t)\\
\implies I(t) = \widetilde{I}(t) + \delta K(t) &= \widetilde{s}F\big(K(t), A(t)L(t)\big) - \widetilde{s}\delta K(t) + \delta K(t)\\
\implies I(t) &= \widetilde{s}F\big(K(t), A(t)L(t)\big) + (1 - \widetilde{s})\delta K(t)
\end{split}
\end{equation*}
\\
We recall that $\dot{K}(t) = I(t) - \delta K(t)$, so we can write:
\begin{equation*}
\begin{split}
\dot{K}(t) = I(t) - \delta K(t) &= \widetilde{s}F\big(K(t), A(t)L(t)\big) + (1 - \widetilde{s})\delta K(t) - \delta K(t)\\
&= \widetilde{s}F\big(K(t), A(t)L(t)\big) + (1 - \widetilde{s} - 1)\delta K(t) \\
&= \widetilde{s}F\big(K(t), A(t)L(t)\big) - \widetilde{s} \delta K(t) \\
&= \widetilde{s}\Big(F\big(K(t), A(t)L(t)\big) - \delta K(t)\Big) \\
\end{split}
\end{equation*}
\\
We write the law of motion of capital:
\begin{equation*}
\begin{split}
\dot{K}(t) &= \widetilde{s}F\big(K(t), A(t)L(t)\big) - \widetilde{s} \delta K(t) \\
\implies \frac{\dot{K}(t)}{K(t)} &= \frac{\widetilde{s}F\big(K(t), A(t)L(t)\big) - \widetilde{s} \delta K(t)}{K(t)}\\
\implies \frac{\dot{K}(t)}{K(t)} &= \frac{\widetilde{s}Y(t)}{K(t)} - \frac{\widetilde{s} \delta K(t)}{K(t)}\\
\implies \frac{\dot{K}(t)}{K(t)} &= \widetilde{s}\frac{Y(t)}{K(t)} - \widetilde{s} \delta \\
\end{split}
\end{equation*}
\\
Along the Balanced Growth Path, capital, output and technology grow at a constant growth rate: $\frac{\dot{K}(t)}{K(t)} = g_K = g_A + n = g$. Therefore,
\begin{equation*}
\begin{split}
g = \widetilde{s}\frac{Y(t)}{K(t)} - \widetilde{s} \delta \\
\implies g + \widetilde{s} \delta = \widetilde{s}\frac{Y(t)}{K(t)} \\
\implies \frac{g + \widetilde{s} \delta}{\widetilde{s}} = \frac{Y(t)}{K(t)} \\
\implies \frac{K(t)}{Y(t)} = \frac{\widetilde{s}}{g + \widetilde{s} \delta} \\
\end{split}
\end{equation*}
\\
We find that as the rate of technological progress $g$ falls to 0, capital's share of national income $\frac{K(t)}{Y(t)}$ increases. However, there is a limit on to how large the ratio can grow. For example, if $g = 0$, $\widetilde{s} = 0.24$ and $\delta = 0.08$, then:
\begin{equation*}
\begin{split}
\Big(\frac{K(t)}{Y(t)}\Big)_{MAX} = \frac{\widetilde{s}}{g + \widetilde{s} \delta} = \frac{0.24}{0.24*0.08} = \frac{1}{0.08} = 12.5 \\
\end{split}
\end{equation*}
\\
Under this modified model, we have:
\begin{equation*}
\begin{split}
C(t) = Y(t) - I(t) &= Y(t) - \Big( \widetilde{s}F\big(K(t), A(t)L(t)\big) + (1 - \widetilde{s})\delta K(t) \Big) \\
&= Y(t) - \widetilde{s}Y(t) - (1 - \widetilde{s})\delta K(t) \\
&= (1 - \widetilde{s})\big(Y(t) - \delta K(t)\big) \\
\implies \frac{C(t)}{Y(t)} &= (1 - \widetilde{s})\frac{Y(t) - \delta K(t)}{Y(t)}\\
&= (1 - \widetilde{s})\big(1 - \delta \frac{K(t)}{Y(t)}\big)
\end{split}
\end{equation*}
\\
We plug in $\frac{K(t)}{Y(t)} = \frac{\widetilde{s}}{g + \widetilde{s} \delta}$:
\begin{equation*}
\begin{split}
\frac{C(t)}{Y(t)} &= (1 - \widetilde{s})\Bigg(1 - \delta \frac{\widetilde{s}}{g + \widetilde{s} \delta} \Bigg)\\
&= (1 - \widetilde{s})\Bigg(\frac{g + \widetilde{s} \delta}{g + \widetilde{s} \delta} - \frac{\delta \widetilde{s}}{g + \widetilde{s} \delta} \Bigg)\\
&= (1 - \widetilde{s})\Bigg(\frac{g}{g + \widetilde{s} \delta} \Bigg)
\end{split}
\end{equation*}
\\
The savings rate is $s = \frac{Y(t) - C(t)}{Y(t)} = 1 - \frac{C(t)}{Y(t)}$. Therefore:
\begin{equation*}
\begin{split}
s = 1 - \frac{C(t)}{Y(t)} &= 1 - (1 - \widetilde{s})\Bigg(\frac{g}{g + \widetilde{s} \delta} \Bigg)\\
&= 1 - \frac{(1 - \widetilde{s})g}{g + \widetilde{s} \delta} \\
&= \frac{g + \widetilde{s} \delta}{g + \widetilde{s} \delta} - \frac{(1 - \widetilde{s})g}{g + \widetilde{s} \delta} \\
&= \frac{g + \widetilde{s} \delta - (1 - \widetilde{s})g}{g + \widetilde{s} \delta} \\
&= \frac{g + \widetilde{s} \delta - g + \widetilde{s}g}{g + \widetilde{s} \delta} \\
&= \frac{\widetilde{s} \delta + \widetilde{s}g}{g + \widetilde{s} \delta} \\
\implies s(g) &= \frac{\widetilde{s} (\delta + g)}{g + \widetilde{s} \delta}
\end{split}
\end{equation*}
\\
We differentiate $s$ with respect to $g$:
\begin{equation*}
\begin{split}
s(g) &= \frac{\widetilde{s}\delta + \widetilde{s}g}{g + \widetilde{s} \delta} \Big(= \frac{u}{v}\Big) \text{ where $u' = \widetilde{s}$ and $v' = 1$} \\
\implies s'(g) &= \frac{u'v - uv'}{v^2} = \frac{\widetilde{s}(g + \widetilde{s} \delta) - (\widetilde{s}\delta + \widetilde{s}g)1}{(g + \widetilde{s} \delta)^2}\\
&= \frac{\widetilde{s}g + \widetilde{s}^2 \delta - \widetilde{s}\delta - \widetilde{s}g}{(g + \widetilde{s} \delta)^2}\\
&= \frac{- \widetilde{s}\delta + \widetilde{s}^2 \delta}{(g + \widetilde{s} \delta)^2}\\
&= \frac{- \widetilde{s}\big(\delta - \widetilde{s} \delta\big)}{(g + \widetilde{s} \delta)^2}\\
\implies s'(g) &= \frac{- \widetilde{s}\delta\big(1 - \widetilde{s}\big)}{(g + \widetilde{s} \delta)^2} < 0\\
\end{split}
\end{equation*}
\\
The savings rate $s$ is decreasing in the rate of technological progress $g$. Furthermore, as $g$ falls to 0, the savings rate increases such that $s = 1$ and the consumption/output ratio $\frac{C(t)}{Y(t)}$ falls to 0.
\\
\\
Piketty goes even further and assumes that $\delta = 0$. This implies that:
\begin{equation*}
\begin{split}
\frac{K(t)}{Y(t)} = \frac{\widetilde{s}}{g + \widetilde{s}\delta} = \frac{\widetilde{s}}{g}\\
\implies \lim_{g \to 0}{\frac{K(t)}{Y(t)} } = \lim_{g \to 0}{ \frac{\widetilde{s}}{g} } = \infty
\end{split}
\end{equation*}
The capital/output ratio $\frac{K(t)}{Y(t)}$ diverges to infinity as the $g$ falls to 0.
\chapter{Real Business Cycles}
\newcommand{\Lagr}{\mathcal{L}}
\section{Background}
We examine fluctuations around the long-run trends captured by the Solow model.
\\
\begin{center}
\includegraphics[scale=0.2]{cycle}
\end{center}
\underline{Lucas' definition of business cycles:} Recurrent fluctuations of output about trend and the comovement among other aggregate time series (consumption, employment, investment).
\\
\\
We will analyse these two characteristics of business cycles:
\begin{enumerate}
\item Differences in the volatility of time series.
\item The comovement of time series (correlations and serial correlations).