Follow the guide in mmseg to prepare ADE20k and CityScapes datasets.
Model | Config | Head | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | Fine-tuned Model |
---|---|---|---|---|---|---|---|
MetaPromptsSeg |
config | Upernet | 512x512 | 80K | 55.83 | 56.81 | Google drive |
Model | Config | Head | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | Fine-tuned Model |
---|---|---|---|---|---|---|---|
MetaPromptsSeg |
config | Upernet | 1024x1024 | 80K | 84.38 | 85.77 | Google drive |
Model | Config | Head | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | Fine-tuned Model |
---|---|---|---|---|---|---|---|
MetaPromptsSeg |
config | Upernet | 1024x1024 | 80K | 85.98 | 87.26 | Google drive |
bash dist_train.sh configs/ade.py <NUM_GPUS> --work-dir <WORK_DIR>
We use 8 GPUs by default.
bash dist_train.sh configs/cityscapes.py <NUM_GPUS> --work-dir <WORK_DIR>
Download the pretraining checkpoint
bash dist_train.sh configs/cityscapes_extra.py <NUM_GPUS> --work-dir <WORK_DIR> --load-from <CHECKPOINT_PATH>
Command format:
bash dist_test.sh configs/<>.py <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU
To evaluate a model with multi-scale and flip, run
bash dist_test.sh configs/<>_ms.py <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU