-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathArcBall.py
323 lines (271 loc) · 9.58 KB
/
ArcBall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
ArcBall.py -- Math utilities, vector, matrix types and ArcBall quaternion rotation class
>>> unit_test_ArcBall_module ()
unit testing ArcBall
Quat for first drag
[ 0.08438914 -0.08534209 -0.06240178 0.99080837]
First transform
[[ 0.97764552 -0.1380603 0.15858325 0. ]
[ 0.10925253 0.97796899 0.17787792 0. ]
[-0.17964739 -0.15657592 0.97119039 0. ]
[ 0. 0. 0. 1. ]]
LastRot at end of first drag
[[ 0.97764552 -0.1380603 0.15858325]
[ 0.10925253 0.97796899 0.17787792]
[-0.17964739 -0.15657592 0.97119039]]
Quat for second drag
[ 0.00710336 0.31832787 0.02679029 0.94757545]
Second transform
[[ 0.88022292 -0.08322023 -0.46720669 0. ]
[ 0.14910145 0.98314685 0.10578787 0. ]
[ 0.45052907 -0.16277808 0.8777966 0. ]
[ 0. 0. 0. 1.00000001]]
"""
try:
import numpy as Numeric
def sumDot( a,b ):
return Numeric.dot (a, b)
except ImportError:
try:
import Numeric
def sumDot( a,b ):
return sum (Numeric.dot (a, b) )
except ImportError:
print ("This demo requires the numpy or Numeric extension, sorry")
import sys
sys.exit()
import copy
from math import sqrt
# //assuming IEEE-754(GLfloat), which i believe has max precision of 7 bits
Epsilon = 1.0e-5
class ArcBallT:
def __init__ (self, NewWidth, NewHeight):
self.m_StVec = Vector3fT ()
self.m_EnVec = Vector3fT ()
self.m_AdjustWidth = 1.0
self.m_AdjustHeight = 1.0
self.setBounds (NewWidth, NewHeight)
def __str__ (self):
str_rep = ""
str_rep += "StVec = " + str (self.m_StVec)
str_rep += "\nEnVec = " + str (self.m_EnVec)
str_rep += "\n scale coords %f %f" % (self.m_AdjustWidth, self.m_AdjustHeight)
return str_rep
def setBounds (self, NewWidth, NewHeight):
# //Set new bounds
assert (NewWidth > 1.0 and NewHeight > 1.0), "Invalid width or height for bounds."
# //Set adjustment factor for width/height
self.m_AdjustWidth = 1.0 / ((NewWidth - 1.0) * 0.5)
self.m_AdjustHeight = 1.0 / ((NewHeight - 1.0) * 0.5)
def _mapToSphere (self, NewPt):
# Given a new window coordinate, will modify NewVec in place
X = 0
Y = 1
Z = 2
NewVec = Vector3fT ()
# //Copy paramter into temp point
TempPt = copy.copy (NewPt)
#print ('NewPt', NewPt, TempPt)
# //Adjust point coords and scale down to range of [-1 ... 1]
TempPt [X] = (NewPt [X] * self.m_AdjustWidth) - 1.0
TempPt [Y] = 1.0 - (NewPt [Y] * self.m_AdjustHeight)
# //Compute the square of the length of the vector to the point from the center
length = sumDot( TempPt, TempPt)
# //If the point is mapped outside of the sphere... (length > radius squared)
if (length > 1.0):
# //Compute a normalizing factor (radius / sqrt(length))
norm = 1.0 / sqrt (length);
# //Return the "normalized" vector, a point on the sphere
NewVec [X] = TempPt [X] * norm;
NewVec [Y] = TempPt [Y] * norm;
NewVec [Z] = 0.0;
else: # //Else it's on the inside
# //Return a vector to a point mapped inside the sphere sqrt(radius squared - length)
NewVec [X] = TempPt [X]
NewVec [Y] = TempPt [Y]
NewVec [Z] = sqrt (1.0 - length)
return NewVec
def click (self, NewPt):
# //Mouse down (Point2fT
self.m_StVec = self._mapToSphere (NewPt)
return
def drag (self, NewPt):
# //Mouse drag, calculate rotation (Point2fT Quat4fT)
""" drag (Point2fT mouse_coord) -> new_quaternion_rotation_vec
"""
X = 0
Y = 1
Z = 2
W = 3
self.m_EnVec = self._mapToSphere (NewPt)
# //Compute the vector perpendicular to the begin and end vectors
# Perp = Vector3fT ()
Perp = Vector3fCross(self.m_StVec, self.m_EnVec);
NewRot = Quat4fT ()
# //Compute the length of the perpendicular vector
if (Vector3fLength(Perp) > Epsilon): # //if its non-zero
# //We're ok, so return the perpendicular vector as the transform after all
NewRot[X] = Perp[X];
NewRot[Y] = Perp[Y];
NewRot[Z] = Perp[Z];
# //In the quaternion values, w is cosine (theta / 2), where theta is rotation angle
NewRot[W] = Vector3fDot(self.m_StVec, self.m_EnVec);
else: # //if its zero
# //The begin and end vectors coincide, so return a quaternion of zero matrix (no rotation)
NewRot.X = NewRot.Y = NewRot.Z = NewRot.W = 0.0;
return NewRot
# ##################### Math utility ##########################################
def Matrix4fT ():
return Numeric.identity (4, 'f')
def Matrix3fT ():
return Numeric.identity (3, 'f')
def Quat4fT ():
return Numeric.zeros (4, 'f')
def Vector3fT ():
return Numeric.zeros (3, 'f')
def Point2fT (x = 0.0, y = 0.0):
pt = Numeric.zeros (2, 'f')
pt [0] = x
pt [1] = y
return pt
def Vector3fDot(u, v):
# Dot product of two 3f vectors
dotprod = Numeric.dot (u,v)
return dotprod
def Vector3fCross(u, v):
# Cross product of two 3f vectors
X = 0
Y = 1
Z = 2
cross = Numeric.zeros (3, 'f')
cross [X] = (u[Y] * v[Z]) - (u[Z] * v[Y])
cross [Y] = (u[Z] * v[X]) - (u[X] * v[Z])
cross [Z] = (u[X] * v[Y]) - (u[Y] * v[X])
return cross
def Vector3fLength (u):
mag_squared = sumDot(u,u)
mag = sqrt (mag_squared)
return mag
def Matrix3fSetIdentity ():
return Numeric.identity (3, 'f')
def Matrix3fMulMatrix3f (matrix_a, matrix_b):
return sumDot( matrix_a, matrix_b )
def Matrix4fSVD (NewObj):
X = 0
Y = 1
Z = 2
s = sqrt (
( (NewObj [X][X] * NewObj [X][X]) + (NewObj [X][Y] * NewObj [X][Y]) + (NewObj [X][Z] * NewObj [X][Z]) +
(NewObj [Y][X] * NewObj [Y][X]) + (NewObj [Y][Y] * NewObj [Y][Y]) + (NewObj [Y][Z] * NewObj [Y][Z]) +
(NewObj [Z][X] * NewObj [Z][X]) + (NewObj [Z][Y] * NewObj [Z][Y]) + (NewObj [Z][Z] * NewObj [Z][Z]) ) / 3.0 )
return s
def Matrix4fSetRotationScaleFromMatrix3f(NewObj, three_by_three_matrix):
# Modifies NewObj in-place by replacing its upper 3x3 portion from the
# passed in 3x3 matrix.
# NewObj = Matrix4fT ()
NewObj [0:3,0:3] = three_by_three_matrix
return NewObj
# /**
# * Sets the rotational component (upper 3x3) of this matrix to the matrix
# * values in the T precision Matrix3d argument; the other elements of
# * this matrix are unchanged; a singular value decomposition is performed
# * on this object's upper 3x3 matrix to factor out the scale, then this
# * object's upper 3x3 matrix components are replaced by the passed rotation
# * components, and then the scale is reapplied to the rotational
# * components.
# * @param three_by_three_matrix T precision 3x3 matrix
# */
def Matrix4fSetRotationFromMatrix3f (NewObj, three_by_three_matrix):
scale = Matrix4fSVD (NewObj)
NewObj = Matrix4fSetRotationScaleFromMatrix3f(NewObj, three_by_three_matrix);
scaled_NewObj = NewObj * scale # Matrix4fMulRotationScale(NewObj, scale);
return scaled_NewObj
def Matrix3fSetRotationFromQuat4f (q1):
# Converts the H quaternion q1 into a new equivalent 3x3 rotation matrix.
X = 0
Y = 1
Z = 2
W = 3
NewObj = Matrix3fT ()
n = sumDot(q1, q1)
s = 0.0
if (n > 0.0):
s = 2.0 / n
xs = q1 [X] * s; ys = q1 [Y] * s; zs = q1 [Z] * s
wx = q1 [W] * xs; wy = q1 [W] * ys; wz = q1 [W] * zs
xx = q1 [X] * xs; xy = q1 [X] * ys; xz = q1 [X] * zs
yy = q1 [Y] * ys; yz = q1 [Y] * zs; zz = q1 [Z] * zs
# This math all comes about by way of algebra, complex math, and trig identities.
# See Lengyel pages 88-92
NewObj [X][X] = 1.0 - (yy + zz); NewObj [Y][X] = xy - wz; NewObj [Z][X] = xz + wy;
NewObj [X][Y] = xy + wz; NewObj [Y][Y] = 1.0 - (xx + zz); NewObj [Z][Y] = yz - wx;
NewObj [X][Z] = xz - wy; NewObj [Y][Z] = yz + wx; NewObj [Z][Z] = 1.0 - (xx + yy)
return NewObj
def unit_test_ArcBall_module ():
# Unit testing of the ArcBall calss and the real math behind it.
# Simulates a click and drag followed by another click and drag.
print ("unit testing ArcBall")
Transform = Matrix4fT ()
LastRot = Matrix3fT ()
ThisRot = Matrix3fT ()
ArcBall = ArcBallT (640, 480)
# print "The ArcBall with NO click"
# print ArcBall
# First click
LastRot = copy.copy (ThisRot)
mouse_pt = Point2fT (500,250)
ArcBall.click (mouse_pt)
# print "The ArcBall with first click"
# print ArcBall
# First drag
mouse_pt = Point2fT (475, 275)
ThisQuat = ArcBall.drag (mouse_pt)
# print "The ArcBall after first drag"
# print ArcBall
# print
# print
print ("Quat for first drag")
print (ThisQuat)
ThisRot = Matrix3fSetRotationFromQuat4f (ThisQuat)
# Linear Algebra matrix multiplication A = old, B = New : C = A * B
ThisRot = Matrix3fMulMatrix3f (LastRot, ThisRot)
Transform = Matrix4fSetRotationFromMatrix3f (Transform, ThisRot)
print ("First transform")
print (Transform)
# Done with first drag
# second click
LastRot = copy.copy (ThisRot)
print ("LastRot at end of first drag")
print (LastRot)
mouse_pt = Point2fT (350,260)
ArcBall.click (mouse_pt)
# second drag
mouse_pt = Point2fT (450, 260)
ThisQuat = ArcBall.drag (mouse_pt)
# print "The ArcBall"
# print ArcBall
print ("Quat for second drag")
print (ThisQuat)
ThisRot = Matrix3fSetRotationFromQuat4f (ThisQuat)
ThisRot = Matrix3fMulMatrix3f (LastRot, ThisRot)
# print ThisRot
Transform = Matrix4fSetRotationFromMatrix3f (Transform, ThisRot)
print ("Second transform")
print (Transform)
# Done with second drag
LastRot = copy.copy (ThisRot)
def _test ():
# This will run doctest's unit testing capability.
# see http://www.python.org/doc/current/lib/module-doctest.html
#
# doctest introspects the ArcBall module for all docstrings
# that look like interactive python sessions and invokes
# the same commands then and there as unit tests to compare
# the output generated. Very nice for unit testing and
# documentation.
import doctest, ArcBall
return doctest.testmod (ArcBall)
if __name__ == "__main__":
# Invoke our function that runs python's doctest unit testing tool.
_test ()
# unit_test ()