-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrec_image.py
67 lines (50 loc) · 1.53 KB
/
rec_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.utils as vutils
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
def rec_image(epoch):
model_root = 'models'
image_root = os.path.join('dataset', 'svhn')
cuda = True
cudnn.benchmark = True
batch_size = 64
image_size = 32
# load data
img_transfrom = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor()
])
dataset = datasets.SVHN(
root=image_root,
split='test',
transform=img_transfrom
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=False,
num_workers=8
)
# test
my_net = torch.load(os.path.join(
model_root, 'svhn_mnist_model_epoch_' + str(epoch) + '.pth')
)
my_net = my_net.eval()
if cuda:
my_net = my_net.cuda()
data_iter = iter(data_loader)
data = data_iter.next()
img, _ = data
batch_size = len(img)
input_img = torch.FloatTensor(batch_size, 1, image_size, image_size)
if cuda:
img = img.cuda()
input_img = input_img.cuda()
input_img.resize_as_(img).copy_(img)
inputv_img = Variable(input_img)
_, rec_img = my_net(input_data=inputv_img)
vutils.save_image(input_img, './recovery_image/svhn_real_epoch_' + str(epoch) + '.png', nrow=8)
vutils.save_image(rec_img.data, './recovery_image/svhn_rec_' + str(epoch) + '.png', nrow=8)