-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.cpp
executable file
·693 lines (589 loc) · 20.8 KB
/
matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
** Astrolog (Version 6.40) File: matrix.cpp
**
** IMPORTANT NOTICE: Astrolog and all chart display routines and anything
** not enumerated below used in this program are Copyright (C) 1991-2018 by
** Walter D. Pullen (Astara@msn.com, http://www.astrolog.org/astrolog.htm).
** Permission is granted to freely use, modify, and distribute these
** routines provided these credits and notices remain unmodified with any
** altered or distributed versions of the program.
**
** The main ephemeris databases and calculation routines are from the
** library SWISS EPHEMERIS and are programmed and copyright 1997-2008 by
** Astrodienst AG. The use of that source code is subject to the license for
** Swiss Ephemeris Free Edition, available at http://www.astro.com/swisseph.
** This copyright notice must not be changed or removed by any user of this
** program.
**
** Additional ephemeris databases and formulas are from the calculation
** routines in the program PLACALC and are programmed and Copyright (C)
** 1989,1991,1993 by Astrodienst AG and Alois Treindl (alois@astro.ch). The
** use of that source code is subject to regulations made by Astrodienst
** Zurich, and the code is not in the public domain. This copyright notice
** must not be changed or removed by any user of this program.
**
** The original planetary calculation routines used in this program have
** been copyrighted and the initial core of this program was mostly a
** conversion to C of the routines created by James Neely as listed in
** 'Manual of Computer Programming for Astrologers', by Michael Erlewine,
** available from Matrix Software.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby (brianw@sounds.wa.com).
**
** More formally: This program is free software; you can redistribute it
** and/or modify it under the terms of the GNU General Public License as
** published by the Free Software Foundation; either version 2 of the
** License, or (at your option) any later version. This program is
** distributed in the hope that it will be useful and inspiring, but
** WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** General Public License for more details, a copy of which is in the
** LICENSE.HTM file included with Astrolog, and at http://www.gnu.org
**
** Initial programming 8/28-30/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 7/22/2018.
*/
#include "astrolog.h"
/*
******************************************************************************
** Assorted Calculations.
******************************************************************************
*/
/* Given a month, day, and year, convert it into a single Julian day value, */
/* i.e. the number of days passed since a fixed reference date. */
long MdyToJulian(int mon, int day, int yea)
{
#ifdef MATRIX
if (!us.fEphemFiles) {
long im, j;
im = 12*((long)yea+4800)+(long)mon-3;
j = (2*(im%12) + 7 + 365*im)/12;
j += (long)day + im/48 - 32083;
if (j > 2299171) /* Take care of dates in */
j += im/4800 - im/1200 + 38; /* Gregorian calendar. */
return j;
}
#endif
#ifdef EPHEM
int fGreg = fTrue;
double jd;
if (yea < yeaJ2G || (yea == yeaJ2G &&
(mon < monJ2G || (mon == monJ2G && day < 15))))
fGreg = fFalse;
jd =
#ifdef EPHEM2
!us.fPlacalcPla ?
#endif
#ifdef SWISS
SwissJulDay(mon, day, yea, 12.0, fGreg) + rRound
#endif
#ifdef EPHEM2
:
#endif
#ifdef PLACALC
julday(mon, day, yea, 12.0, fGreg) + rRound
#endif
;
return (long)RFloor(jd);
#else
return 0; /* Shouldn't ever be reached. */
#endif /* EPHEM */
}
/* Like above but return a fractional Julian time given the extra info. */
real MdytszToJulian(int mon, int day, int yea, real tim, real dst, real zon)
{
if (dst == dstAuto)
dst = (real)is.fDst;
return (real)MdyToJulian(mon, day, yea) + (tim + zon - dst) / 24.0;
}
/* Take a Julian day value, and convert it back into the corresponding */
/* month, day, and year. */
void JulianToMdy(real JD, int *mon, int *day, int *yea)
{
#ifdef MATRIX
if (!us.fEphemFiles) {
long L, N, IT, JT, K, IK;
L = (long)RFloor(JD+rRound)+68569L;
N = Dvd(4L*L, 146097L);
L -= Dvd(146097L*N + 3L, 4L);
IT = Dvd(4000L*(L+1L), 1461001L);
L -= Dvd(1461L*IT, 4L) - 31L;
JT = Dvd(80L*L, 2447L);
K = L-Dvd(2447L*JT, 80L);
L = Dvd(JT, 11L);
JT += 2L - 12L*L;
IK = 100L*(N-49L) + IT + L;
*mon = (int)JT; *day = (int)K; *yea = (int)IK;
}
#endif
#ifdef EPHEM
double tim;
#ifdef EPHEM2
if (!us.fPlacalcPla)
#endif
#ifdef SWISS
SwissRevJul(JD, JD >= 2299171.0 /* Oct 15, 1582 */, mon, day, yea, &tim);
#endif
#ifdef EPHEM2
else
#endif
#ifdef PLACALC
revjul(JD, JD >= 2299171.0 /* Oct 15, 1582 */, mon, day, yea, &tim);
#endif
#endif /* EPHEM */
}
#ifdef MATRIX
/* This is a subprocedure of CastChart(). Once we have the chart parameters */
/* calculate a few important things related to the date, i.e. the Greenwich */
/* time, the Julian day and fractional part of the day, the offset to the */
/* sidereal, and a couple of other things. */
real ProcessInput(flag fDate)
{
real Ln, Off;
/* Compute angle that the ecliptic is inclined to the Celestial Equator */
is.OB = 23.452294 - 0.0130125*is.T;
Ln = Mod((933060-6962911*is.T+7.5*is.T*is.T)/3600.0); /* Mean lunar node */
Off = (259205536.0*is.T+2013816.0)/3600.0; /* Mean Sun */
Off = 17.23*RSin(RFromD(Ln)) + 1.27*RSin(RFromD(Off)) -
(5025.64+1.11*is.T)*is.T;
Off = (Off-84038.27)/3600.0;
is.rSid = (us.fSidereal ? Off : 0.0) + us.rZodiacOffset;
return Off;
}
/* Convert polar to rectangular coordinates. */
void PolToRec(real a, real r, real *x, real *y)
{
if (a == 0.0)
a = rSmall;
*x = r*RCos(a);
*y = r*RSin(a);
}
/* Convert rectangular to spherical coordinates. */
real RecToSph(real B, real L, real O)
{
real R, Q, G, X, Y, A;
A = B; R = 1.0;
PolToRec(A, R, &X, &Y);
Q = Y; R = X; A = L;
PolToRec(A, R, &X, &Y);
G = X; X = Y; Y = Q;
RecToPol(X, Y, &A, &R);
A += RFromD(O);
PolToRec(A, R, &X, &Y);
Q = RAsin(Y);
Y = X; X = G;
RecToPol(X, Y, &A, &R);
if (A < 0.0)
A += 2*rPi;
G = A;
return G; /* We only ever care about and return one of the coordinates. */
}
#endif
/* Do a coordinate transformation: Given a longitude and latitude value, */
/* return the new longitude and latitude values that the same location */
/* would have, were the equator tilted by a specified number of degrees. */
/* In other words, do a pole shift! This is used to convert among ecliptic, */
/* equatorial, and local coordinates, each of which have zero declination */
/* in different planes. In other words, take into account the Earth's axis. */
void CoorXform(real *azi, real *alt, real tilt)
{
real x, y, a1, l1;
real sinalt, cosalt, sinazi, sintilt, costilt;
*azi = RFromD(*azi); *alt = RFromD(*alt); tilt = RFromD(tilt);
sinalt = RSin(*alt); cosalt = RCos(*alt); sinazi = RSin(*azi);
sintilt = RSin(tilt); costilt = RCos(tilt);
x = cosalt * sinazi * costilt - sinalt * sintilt;
y = cosalt * RCos(*azi);
l1 = Angle(y, x);
a1 = cosalt * sinazi * sintilt + sinalt * costilt;
a1 = RAsin(a1);
*azi = DFromR(l1); *alt = DFromR(a1);
}
#ifdef MATRIX
/* This is another subprocedure of CastChart(). Calculate a few variables */
/* corresponding to the chart parameters that are used later on. The */
/* astrological vertex (object number 20) is also calculated here. */
void ComputeVariables(real *vtx)
{
real B, L, G, tim = TT;
if (us.fProgress && !us.fSolarArc) {
tim = JulianDayFromTime(is.T) + 0.5;
tim = RFract(tim)*24.0;
}
is.RA = RFromD(Mod((6.6460656 + 2400.0513*is.T + 2.58E-5*is.T*is.T +
tim)*15.0 - OO));
L = is.RA + rPi; B = rPiHalf - RAbs(RFromD(AA));
if (AA < 0.0)
B = -B;
G = RecToSph(B, L, -is.OB);
*vtx = Mod(is.rSid + DFromR(G+rPiHalf)); /* Vertex */
}
/*
******************************************************************************
** House Cusp Calculations.
******************************************************************************
*/
/* The following three functions calculate the Midheaven, Ascendant, and */
/* East Point of the chart in question, based on time and location. The */
/* first two are also used in some of the house cusp calculation routines */
/* as a quick way to get the 10th and 1st cusps. The East Point object is */
/* technically defined as the Ascendant's position at zero latitude. */
real CuspMidheaven(void)
{
real MC;
MC = RAtn(RTan(is.RA)/RCosD(is.OB));
if (MC < 0.0)
MC += rPi;
if (is.RA > rPi)
MC += rPi;
return Mod(DFromR(MC)+is.rSid);
}
real CuspAscendant(void)
{
real Asc;
Asc = Angle(-RSin(is.RA)*RCosD(is.OB)-RTanD(AA)*RSinD(is.OB), RCos(is.RA));
return Mod(DFromR(Asc)+is.rSid);
}
real CuspEastPoint(void)
{
real EP;
EP = Angle(-RSin(is.RA)*RCosD(is.OB), RCos(is.RA));
return Mod(DFromR(EP)+is.rSid);
}
/* These are various different algorithms for calculating the house cusps: */
real CuspPlacidus(real deg, real FF, flag fNeg)
{
real LO, R1, XS, X;
int i;
R1 = is.RA+RFromD(deg);
X = fNeg ? 1.0 : -1.0;
/* Looping 10 times is arbitrary, but it's what other programs do. */
for (i = 1; i <= 10; i++) {
/* This formula works except at 0 latitude (AA == 0.0). */
XS = X*RSin(R1)*RTanD(is.OB)*RTanD(AA == 0.0 ? 0.0001 : AA);
XS = RAcos(XS);
if (XS < 0.0)
XS += rPi;
R1 = is.RA + (fNeg ? rPi-(XS/FF) : (XS/FF));
}
LO = RAtn(RTan(R1)/RCosD(is.OB));
if (LO < 0.0)
LO += rPi;
if (RSin(R1) < 0.0)
LO += rPi;
return DFromR(LO);
}
void HousePlacidus(void)
{
int i;
chouse[1] = Mod(is.Asc-is.rSid);
chouse[4] = Mod(is.MC+rDegHalf-is.rSid);
chouse[5] = CuspPlacidus(30.0, 3.0, fFalse) + rDegHalf;
chouse[6] = CuspPlacidus(60.0, 1.5, fFalse) + rDegHalf;
chouse[2] = CuspPlacidus(120.0, 1.5, fTrue);
chouse[3] = CuspPlacidus(150.0, 3.0, fTrue);
for (i = 1; i <= cSign; i++) {
if (i <= 6)
chouse[i] = Mod(chouse[i]+is.rSid);
else
chouse[i] = Mod(chouse[i-6]+rDegHalf);
}
}
void HouseKoch(void)
{
real A1, A2, A3, KN, D, X;
int i;
A1 = RSin(is.RA)*RTanD(AA)*RTanD(is.OB);
A1 = RAsin(A1);
for (i = 1; i <= cSign; i++) {
D = Mod(60.0+30.0*(real)i);
A2 = D/rDegQuad-1.0; KN = 1.0;
if (D >= rDegHalf) {
KN = -1.0;
A2 = D/rDegQuad-3.0;
}
A3 = RFromD(Mod(DFromR(is.RA)+D+A2*DFromR(A1)));
X = Angle(RCos(A3)*RCosD(is.OB)-KN*RTanD(AA)*RSinD(is.OB), RSin(A3));
chouse[i] = Mod(DFromR(X)+is.rSid);
}
}
void HouseEqual(void)
{
int i;
for (i = 1; i <= cSign; i++)
chouse[i] = Mod(is.Asc + ZFromS(i));
}
void HouseCampanus(void)
{
real KO, DN, X;
int i;
for (i = 1; i <= cSign; i++) {
KO = RFromD(60.000001+30.0*(real)i);
DN = RAtn(RTan(KO)*RCosD(AA));
if (DN < 0.0)
DN += rPi;
if (RSin(KO) < 0.0)
DN += rPi;
X = Angle(RCos(is.RA+DN)*RCosD(is.OB)-RSin(DN)*RTanD(AA)*RSinD(is.OB),
RSin(is.RA+DN));
chouse[i] = Mod(DFromR(X)+is.rSid);
}
}
void HouseMeridian(void)
{
real D, X;
int i;
for (i = 1; i <= cSign; i++) {
D = RFromD(60.0+30.0*(real)i);
X = Angle(RCos(is.RA+D)*RCosD(is.OB), RSin(is.RA+D));
chouse[i] = Mod(DFromR(X)+is.rSid);
}
}
void HouseRegiomontanus(void)
{
real D, X;
int i;
for (i = 1; i <= cSign; i++) {
D = RFromD(60.0+30.0*(real)i);
X = Angle(RCos(is.RA+D)*RCosD(is.OB)-RSin(D)*RTanD(AA)*RSinD(is.OB),
RSin(is.RA+D));
chouse[i] = Mod(DFromR(X)+is.rSid);
}
}
void HousePorphyry(void)
{
real X, Y;
int i;
X = is.Asc-is.MC;
if (X < 0.0)
X += rDegMax;
Y = X/3.0;
for (i = 1; i <= 2; i++)
chouse[i+4] = Mod(rDegHalf+is.MC+i*Y);
X = Mod(rDegHalf+is.MC)-is.Asc;
if (X < 0.0)
X += rDegMax;
chouse[1]=is.Asc;
Y = X/3.0;
for (i = 1; i <= 3; i++)
chouse[i+1] = Mod(is.Asc+i*Y);
for (i = 1; i <= 6; i++)
chouse[i+6] = Mod(chouse[i]+rDegHalf);
}
void HouseMorinus(void)
{
real D, X;
int i;
for (i = 1; i <= cSign; i++) {
D = RFromD(60.0+30.0*(real)i);
X = Angle(RCos(is.RA+D), RSin(is.RA+D)*RCosD(is.OB));
chouse[i] = Mod(DFromR(X)+is.rSid);
}
}
real CuspTopocentric(real deg)
{
real OA, X, LO;
OA = ModRad(is.RA+RFromD(deg));
X = RAtn(RTan(AA)/RCos(OA));
LO = RAtn(RCos(X)*RTan(OA)/RCos(X+RFromD(is.OB)));
if (LO < 0.0)
LO += rPi;
if (RSin(OA) < 0.0)
LO += rPi;
return LO;
}
void HouseTopocentric(void)
{
real TL, P1, P2, LT;
int i;
chouse[4] = ModRad(RFromD(is.MC+rDegHalf-is.rSid));
TL = RTanD(AA); P1 = RAtn(TL/3.0); P2 = RAtn(TL/1.5); LT = AA;
AA = P1; chouse[5] = CuspTopocentric(30.0) + rPi;
AA = P2; chouse[6] = CuspTopocentric(60.0) + rPi;
AA = RFromD(LT); chouse[1] = CuspTopocentric(90.0);
AA = P2; chouse[2] = CuspTopocentric(120.0);
AA = P1; chouse[3] = CuspTopocentric(150.0);
AA = LT;
for (i = 1; i <= 6; i++) {
chouse[i] = Mod(DFromR(chouse[i])+is.rSid);
chouse[i+6] = Mod(chouse[i]+rDegHalf);
}
}
/*
******************************************************************************
** Planetary Position Calculations.
******************************************************************************
*/
/* Given three values, return them combined as the coefficients of a */
/* quadratic equation as a function of the chart time. */
real ReadThree(real r0, real r1, real r2)
{
return RFromD(r0 + r1*is.T + r2*is.T*is.T);
}
/* Another coordinate transformation. This is used by the ComputePlanets() */
/* procedure to rotate rectangular coordinates by a certain amount. */
void RecToSph2(real AP, real AN, real _IN, real *X, real *Y, real *G)
{
real R, D, A;
RecToPol(*X, *Y, &A, &R); A += AP; PolToRec(A, R, X, Y);
D = *X; *X = *Y; *Y = 0.0; RecToPol(*X, *Y, &A, &R);
A += _IN; PolToRec(A, R, X, Y);
*G = *Y; *Y = *X; *X = D; RecToPol(*X, *Y, &A, &R); A += AN;
if (A < 0.0)
A += 2.0*rPi;
PolToRec(A, R, X, Y);
}
/* Calculate some harmonic delta error correction factors to add onto the */
/* coordinates of Jupiter through Pluto, for better accuracy. */
void ErrorCorrect(int ind, real *x, real *y, real *z)
{
real U, V, W, A, S0, T0[4], *pr;
int IK, IJ, irError;
irError = cErrorCount[ind-oJup];
pr = (real *)&rErrorData[iErrorOffset[ind-oJup]];
for (IK = 1; IK <= 3; IK++) {
if (ind == oJup && IK == 3) {
T0[3] = 0.0;
break;
}
if (IK == 3)
irError--;
S0 = ReadThree(pr[0], pr[1], pr[2]); pr += 3;
A = 0.0;
for (IJ = 1; IJ <= irError; IJ++) {
U = *pr++; V = *pr++; W = *pr++;
A += RFromD(U)*RCos((V*is.T+W)*rPi/rDegHalf);
}
T0[IK] = DFromR(S0+A);
}
*x += T0[2]; *y += T0[1]; *z += T0[3];
}
/* This is the (classic) heart of the whole program of Astrolog. Calculate */
/* the position of each body that orbits the Sun. A heliocentric chart is */
/* most natural; extra calculation is needed to have other central bodies. */
void ComputePlanets(void)
{
real helioret[oNorm+1], heliox[oNorm+1], helioy[oNorm+1], helioz[oNorm+1];
real aber = 0.0, AU, E, EA, E1, M, XW, YW, AP, AN, _IN, X, Y, G, XS, YS, ZS;
int ind = oSun, i;
OE *poe;
while (ind <= (us.fUranian ? oNorm : cPlanet)) {
if (ignore[ind] && ind > oSun)
goto LNextPlanet;
poe = &rgoe[IoeFromObj(ind)];
EA = M = ModRad(ReadThree(poe->ma0, poe->ma1, poe->ma2));
E = DFromR(ReadThree(poe->ec0, poe->ec1, poe->ec2));
for (i = 1; i <= 5; i++)
EA = M+E*RSin(EA); /* Solve Kepler's equation */
AU = poe->sma; /* Semi-major axis */
E1 = 0.01720209/(pow(AU, 1.5)*
(1.0-E*RCos(EA))); /* Begin velocity coordinates */
XW = -AU*E1*RSin(EA); /* Perifocal coordinates */
YW = AU*E1*pow(1.0-E*E,0.5)*RCos(EA);
AP = ReadThree(poe->ap0, poe->ap1, poe->ap2);
AN = ReadThree(poe->an0, poe->an1, poe->an2);
_IN = ReadThree(poe->in0, poe->in1, poe->in2); /* Calculate inclination */
X = XW; Y = YW;
RecToSph2(AP, AN, _IN, &X, &Y, &G); /* Rotate velocity coords */
heliox[ind] = X; helioy[ind] = Y;
helioz[ind] = G; /* Helio ecliptic rectangular */
X = AU*(RCos(EA)-E); /* Perifocal coordinates for */
Y = AU*RSin(EA)*pow(1.0-E*E,0.5); /* rectangular position coordinates */
RecToSph2(AP, AN, _IN, &X, &Y, &G); /* Rotate for rectangular */
XS = X; YS = Y; ZS = G; /* position coordinates */
if (FBetween(ind, oJup, oPlu))
ErrorCorrect(ind, &XS, &YS, &ZS);
ret[ind] = DFromR((XS*helioy[ind]-YS*heliox[ind]) /
(XS*XS+YS*YS)); /* Helio daily motion */
space[ind].x = XS; space[ind].y = YS; space[ind].z = ZS;
ProcessPlanet(ind, 0.0);
LNextPlanet:
ind += (ind == oSun ? 2 : (ind != cPlanet ? 1 : uranLo+1-cPlanet));
}
space[oEar] = space[oSun];
planet[oEar] = planet[oSun]; planetalt[oEar] = planetalt[oSun];
ret[oEar] = ret[oSun];
heliox[oEar] = heliox[oSun]; helioy[oEar] = helioy[oSun];
helioret[oEar] = helioret[oSun] = RFromD(1.0);
space[oSun].x = space[oSun].y = space[oSun].z =
planet[oSun] = planetalt[oSun] = heliox[oSun] = helioy[oSun] = 0.0;
if (us.objCenter == oSun) {
if (us.fVelocity)
for (i = 0; i <= oNorm; i++) /* Use relative velocity */
ret[i] = 1.0; /* if -v0 is in effect. */
return;
}
/* A second loop is needed for geocentric charts or central bodies other */
/* than the Sun. For example, we can't find the position of Mercury in */
/* relation to Pluto until we know the position of Pluto in relation to */
/* the Sun, and since Mercury is calculated first, another pass needed. */
ind = us.objCenter;
for (i = 0; i <= oNorm; i++) {
helioret[i] = ret[i];
if (i != oMoo && i != ind) {
space[i].x -= space[ind].x;
space[i].y -= space[ind].y;
space[i].z -= space[ind].z;
}
}
for (i = oEar; i <= (us.fUranian ? oNorm : cPlanet);
i += (i == oSun ? 2 : (i != cPlanet ? 1 : uranLo+1-cPlanet))) {
if ((ignore[i] && i > oSun) || i == ind)
continue;
XS = space[i].x; YS = space[i].y; ZS = space[i].z;
ret[i] = DFromR((XS*(helioy[i]-helioy[ind])-YS*(heliox[i]-heliox[ind])) /
(XS*XS + YS*YS));
if (ind == oEar && !us.fTruePos)
aber = 0.0057756 * RSqr(XS*XS+YS*YS+ZS*ZS) * ret[i]; /* Aberration */
ProcessPlanet(i, aber);
if (us.fVelocity) /* Use relative velocity */
ret[i] = ret[i]/helioret[i]; /* if -v0 is in effect */
}
space[ind].x = space[ind].y = space[ind].z = 0.0;
}
/*
******************************************************************************
** Lunar Position Calculations
******************************************************************************
*/
/* Calculate the position and declination of the Moon, and the Moon's North */
/* Node. This has to be done separately from the other planets, because they */
/* all orbit the Sun, while the Moon orbits the Earth. */
void ComputeLunar(real *moonlo, real *moonla, real *nodelo, real *nodela)
{
real LL, G, N, G1, D, L, ML, L1, MB, T1, Y, M = 3600.0, T2;
T2 = is.T*is.T;
LL = 973563.0+1732564379.0*is.T-4.0*T2; /* Compute mean lunar longitude */
G = 1012395.0+6189.0*is.T; /* Sun's mean longitude of perigee */
N = 933060.0-6962911.0*is.T+7.5*T2; /* Compute mean lunar node */
G1 = 1203586.0+14648523.0*is.T-37.0*T2; /* Mean longitude of lunar perigee */
D = 1262655.0+1602961611.0*is.T-5.0*T2; /* Mean elongation of Moo from Sun */
L = (LL-G1)/M; L1 = ((LL-D)-G)/M; /* Some auxiliary angles */
T1 = (LL-N)/M; D = D/M; Y = 2.0*D;
/* Compute Moon's perturbations. */
ML = 22639.6*RSinD(L) - 4586.4*RSinD(L-Y) + 2369.9*RSinD(Y) +
769.0*RSinD(2.0*L) - 669.0*RSinD(L1) - 411.6*RSinD(2.0*T1) -
212.0*RSinD(2.0*L-Y) - 206.0*RSinD(L+L1-Y);
ML += 192.0*RSinD(L+Y) - 165.0*RSinD(L1-Y) + 148.0*RSinD(L-L1) -
125.0*RSinD(D) - 110.0*RSinD(L+L1) - 55.0*RSinD(2.0*T1-Y) -
45.0*RSinD(L+2.0*T1) + 40.0*RSinD(L-2.0*T1);
*moonlo = G = Mod((LL+ML)/M+is.rSid); /* Lunar longitude */
/* Compute lunar latitude. */
MB = 18461.5*RSinD(T1) + 1010.0*RSinD(L+T1) - 999.0*RSinD(T1-L) -
624.0*RSinD(T1-Y) + 199.0*RSinD(T1+Y-L) - 167.0*RSinD(L+T1-Y);
MB += 117.0*RSinD(T1+Y) + 62.0*RSinD(2.0*L+T1) -
33.0*RSinD(T1-Y-L) - 32.0*RSinD(T1-2.0*L) - 30.0*RSinD(L1+T1-Y);
*moonla = MB =
RSgn(MB)*((RAbs(MB)/M)/rDegMax-RFloor((RAbs(MB)/M)/rDegMax))*rDegMax;
/* Compute position of the North Lunar Node, either True or Mean. */
if (us.fTrueNode)
N = N+5392.0*RSinD(2.0*T1-Y)-541.0*RSinD(L1)-442.0*RSinD(Y)+
423.0*RSinD(2.0*T1)-291.0*RSinD(2.0*L-2.0*T1);
*nodelo = Mod(N/M+is.rSid);
*nodela = 0.0;
}
#endif /* MATRIX */
/* matrix.cpp */