forked from alaghemandi/CS555_2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModule-1-Example-3.R
36 lines (22 loc) · 893 Bytes
/
Module-1-Example-3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Generate 200 random data points by using normal distribution function. (Default Values)
my.NiceData <- rnorm(200)
# Check the content of variable
head(my.NiceData)
# Generate 200 random data points by using normal distribution function. Mean=0.8, SD=1
my.NiceData2 <- rnorm(200, mean=.8)
# See some data of this variable
head(my.NiceData2)
# Draw a Histogram
hist(my.NiceData)
# Use 8 bins to plot a histogram
hist(my.NiceData, breaks=8, col="#CCCCFF")
# Instead of showing count, make area sum to 1, (freq=FALSE)
hist(my.NiceData, breaks=8, col="#CCCCFF", freq=FALSE)
# Create a variables for breaks and put breaks at every 0.6
# use seq function. read ?seq
boundaries <- seq(-3, 3.6, by=.6)
hist(my.NiceData, breaks=boundaries)
# Kernel density plot
plot(density(my.NiceData))
# str fucntion prints some good details about every object in R.
utils::str(hist(my.NiceData))