forked from alaghemandi/CS555_2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModule-6-Example-6.R
46 lines (32 loc) · 1.13 KB
/
Module-6-Example-6.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# setwd("SET THE Working Director to THE PATH TO THIS DIRECTORY")
rm(list = ls())
# install.packages("aod")
# install.packages("pROC")
library(aod)
library(stats)
library(pROC)
data<-read.csv("Datasets/cevent.csv")
data$male <- ifelse(data$sex =="M", 1, 0)
# Let us assume that we have data about happyness of patients
data$happiness<-cut(data$chol, seq(60,220,40), right=FALSE, labels=c(1:4))
data$happiness <-as.factor(data$happiness)
#
m <- glm(event ~ chol + age + happiness, data=data, family = "binomial")
summary(m)
# overall test of happiness.
# install.package("aod")
library(aod)
wald.test(b = coef(m) , Sigma = vcov(m) , Terms = 3:5)
# Terms: An optional integer vector specifying which coefcients
# should be jointly tested
# Terms defnes to compare which regression coefcients,
# here we want to compare the 3 to 5 (first is the intercept)
# It gives as a result Chi-Squared test results and p-value of it
# if p is smaller than 0.05 you can reject the null hypothesis
# Wald Test using multcomp package.
library(multcomp)
regTermTest(m, "chol")
regTermTest(m, "age")
#
regTermTest(m, c("chol","age"))
regTermTest(m, ~chol+age)