-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcanon-mm-example.lisp
166 lines (132 loc) · 3.7 KB
/
canon-mm-example.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
;;; -*- SYNTAX: COMMON-LISP; MODE: LISP; BASE: 10; PACKAGE: *LISP; -*-
(in-package '*lisp)
;;; We assume a two-dimensional square vp set.
;;; The matrices to be multiplied are stored
;;; one element per virtual processor. They
;;; must be single float numbers.
;;; This tells the *Lisp compiler that the function, when
;;; called, will return a single float pvar.
(*proclaim '(ftype (function (single-float-pvar single-float-pvar) single-float-pvar)
sf-canon-matrix-multiply
))
;;; Assume the matrices look like
;;; a b c
;;; d e f
;;; g h i
;;; A B C
;;; D E F
;;; G H I
;;; as an example.
(defun sf-canon-matrix-multiply (m1 m2)
;; Tell the *Lisp compiler that m1 and m2 are
;; pvars of type single-float.
(declare (type single-float-pvar m1 m2))
(unless
(and (eql 2 (vp-set-rank *current-vp-set*))
(eql (elt (vp-set-dimensions *current-vp-set*) 0)
(elt (vp-set-dimensions *current-vp-set*) 1)
))
(error "This only works in a 2-dimensional square Vp Set")
)
;; Allocate some temporaries for our matrices.
;; Allocate temporaries to hold each processor's
;; X and Y addresses, since we will make use
;; of those addresses more than once.
(*let (temp1 temp2 temp3 dest selfx selfy)
(declare (type single-float-pvar temp1 temp2 temp3 dest))
(declare (type (field-pvar 32) selfx selfy))
;; (unless (= shit 1)
(*set selfx (self-address-grid!! 0))
(*set selfy (self-address-grid!! 1))
;; )
;; What the *pset's do is make m1 look like
;;
;; a b c
;; e f d
;; i g h
;;
;; and m2 look like
;;
;; A E I
;; D H C
;; G B F
;;
;; that is, each row of m1 get's rotated in X by
;; an amount, and each column of m2 get's rotated
;; in Y by some amount.
;; The rotated m1 gets stored in temp1, and the
;; rotated m2 gets stored in temp2.
(*pset :no-collisions m1 temp1
(grid!!
(mod!! (-!! selfx selfy) (the fixnum (dimension-size 0)))
selfy
)
:vp-set *current-vp-set*
)
(*pset :no-collisions m2 temp2
(grid!!
(mod!! (-!! selfy selfx) (the fixnum (dimension-size 1)))
selfx
)
:vp-set *current-vp-set*
)
(*set dest 0)
;; Now we multiply temp1 by temp2 and accumulate
;; the result in dest. Then we rotate temp1 in X
;; by one and rotate temp2 in Y by 1.
;; We continue this process as many times as there
;; are elements in a single row/column.
;; After the first step dest looks like
;;
;; Aa Eb Ic
;; De Hf Cd
;; Gi Bg Fh
;;
;; and temp1 and temp2 look like
;;
;; b c a
;; f d e
;; g h i
;;
;; D H C
;; G B F
;; A E I
;;
(dotimes (j (dimension-size 0))
;;(incf count)
(*set temp3 (*!! temp1 temp2))
(*set dest (+!! dest temp3))
(*set temp1 (news!! temp1 1 0))
(*set temp2 (news!! temp2 0 1))
)
;; After the second step we get
;;
;; Aa + Db Eb + Hc Ic + Ca
;; De + Gf Hf + Bd Cd + Fe
;; Gi + Ag Bg + Eh Fh + Ii
;;
;; c a b
;; d e f
;; h e g
;;
;; G B F
;; A E I
;; D H C
;;
;; After the third step dest looks like
;;
;; Aa + Db + Gc Eb + Hc + Ba Ic + Ca + Fb
;; De + Gf + Ad Hf + Bd + Ee Cd + Fe + If
;; Gi + Ag + Dh Bg + Eh + Hi Fh + Ii + Cg
;;
;; and we are done.
dest
))
(defun example-canon ()
;; Should print out a 5x5 grid of 128.0's
(let-vp-set (mm-vp-set (create-vp-set #+*LISP-HARDWARE '(128 128) #+*LISP-SIMULATOR '(8 8)))
(*with-vp-set mm-vp-set
(*let ((m1 1.0) (m2 1.0))
(declare (type single-float-pvar m1 m2))
(ppp (sf-canon-matrix-multiply m1 m2) :mode :grid :end '(5 5))
))))