-
Notifications
You must be signed in to change notification settings - Fork 12
/
ttn-abp-workshop.ino
321 lines (294 loc) · 12.5 KB
/
ttn-abp-workshop.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*******************************************************************************
* Code adapted for the Node Building Workshop using a modified LoraTracker board
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses ABP (Activation-by-personalisation), where a DevAddr and
* Session keys are preconfigured (unlike OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
*
* To use this sketch, first register your application and device with
* the things network, to set or generate a DevAddr, NwkSKey and
* AppSKey. Each device should have their own unique values for these
* fields.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <avr/sleep.h>
#include <avr/wdt.h>
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "LowPower.h"
#include <Wire.h>
#include "i2c.h"
#include "i2c_SI7021.h"
SI7021 si7021;
#include <Arduino.h>
int sleepcycles = 7; // every sleepcycle will last 8 secs, total sleeptime will be sleepcycles * 8 sec
bool joined = false;
bool sleeping = false;
#define LedPin 10 // pin 13 LED is not used, because it is connected to the SPI port
#define BatteryThreshold 320 // depending on voltage divider and experiments
// LoRaWAN NwkSKey, network session key
// Copy from TTN Console MSB first!
static const PROGMEM u1_t NWKSKEY[16] = { 0x01, 0x02, 0x03, 0x04, 0x58, 0xBD, 0xFE, 0x47, 0x45, 0x34, 0x00, 0x70, 0x55, 0x73, 0x9C, 0x20 };
// LoRaWAN AppSKey, application session key
// Copy from TTN Console MSB first!
static const u1_t PROGMEM APPSKEY[16] = { 0x01, 0x02, 0x03, 0x04, 0x4D, 0x31, 0x35, 0x4D, 0xA5, 0x65, 0x7E, 0xD5, 0x4A, 0xD2, 0x13, 0xB3 };
// LoRaWAN end-device address (DevAddr)
static const u4_t DEVADDR = 0x12345678 ; // <-- Change this address for every node!
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping is hardware specific. below as used in the Loratracker.uk board
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2,5, LMIC_UNUSED_PIN}, //DIO0 and DIO1 connected
};
void onEvent (ev_t ev) {
int i,j;
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
sleeping = true;
if (LMIC.dataLen) {
// data received in rx slot after tx
// if any data received, a LED will blink
// this number of times, with a maximum of 10
Serial.print(F("Data Received: "));
Serial.println(LMIC.frame[LMIC.dataBeg],HEX);
i=(LMIC.frame[LMIC.dataBeg]);
// i (0..255) can be used as data for any other application
// like controlling a relay, showing a display message etc.
if (i>10){
i=10; // maximum number of BLINKs
}
for(j=0;j<i;j++)
{
digitalWrite(LedPin,HIGH);
delay(200);
digitalWrite(LedPin,LOW);
delay(400);
}
}
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
delay(50); // delay to complete Serial Output before Sleeping
// Schedule next transmission
// next transmission will take place after next wake-up cycle in main loop
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j) {
byte buffer[2];
float humi,temp;
int16_t t_value, h_value, s_value;
si7021.getHumidity(humi);
si7021.getTemperature(temp);
si7021.triggerMeasurement();
// getting sensor values
Serial.print(F("TEMP: "));
Serial.print(temp);
Serial.print(F(" HUMI: "));
Serial.print(humi);
temp = constrain(temp,-24,40); //temp in range -24 to 40 (64 steps)
humi=constrain(humi,20,100); //humi in range 20 to 100 (80 steps)
int sensorValue = analogRead(A0); // battery voltage
// print out the value you read:
Serial.print(F(" Battery: "));
Serial.println(sensorValue);
// Vout = Vin * (R2/(R1+R2))
// Vout = Vin * (4700/(100000+4700)), 0.135V - 3V battery
// Vout = Vin * (10000/(100000+10000)), 0,273V - 3V battery
// Vout = Vin * (11000/(91000+11000)), 0,323V - 3V battery
// INTERNAL: 1.1V -> 0.001V per count
// 3V battery -> 0.135V -> 135 (4k7 on R2)
// 3V battery -> 0.273V -> 273 (10K on R2)
// 3V battery -> 0.324V -> 324 (11K/91K)
t_value=int16_t((temp*(100/6.25)+2400/6.25)); //0.0625 degree steps with offset
// no negative values
Serial.print(F("decoded TEMP: "));
Serial.print(t_value,HEX);
h_value=int16_t((humi-20)/5); //5% steps, offset 20.
Serial.print(F(" decoded HUMI: "));
Serial.print(h_value,HEX);
s_value=(h_value<<10) + t_value; // putting the bits in the right place
Serial.print(F(" decoded sent: "));
Serial.println(s_value,HEX);
buffer[0]=s_value&0xFF; //lower byte
buffer[1]=s_value>>8; //higher byte
if (sensorValue>BatteryThreshold)
{
Serial.println(F("Battery OK"));
}
else
{
Serial.println(F("Battery LOW"));
buffer[1]=buffer[1]+0x80; //warning in bit 15.
}
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, (uint8_t*) buffer, 2 , 0);
Serial.println(F("Sending: "));
}
}
void setup() {
Serial.begin(115200);
Serial.println(F("Starting"));
Serial.print(F("Probe SI7021: "));
if (si7021.initialize()) Serial.println(F("Sensor found!"));
else
{
Serial.println(F("Sensor missing"));
while(1) {}; // Program will stop if there is no sensor
}
analogReference(INTERNAL); //reference will be 1,1V internal on 3.3V Arduino
// LED is connected to pin 10, if this port is NOT set as output before
// SPI initialization, it will be used as SS (Slave Select) and controlled by the SPI module
pinMode(LedPin, OUTPUT);
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
// do_send(&sendjob);
}
void loop() {
do_send(&sendjob); // Sent sensor values
while(sleeping == false)
{
os_runloop_once();
}
sleeping = false;
for (int i=0;i<sleepcycles;i++)
{
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); //sleep 8 seconds
}
}