-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap_gen_nn_all_features.py
225 lines (194 loc) · 10.1 KB
/
map_gen_nn_all_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, Subset, WeightedRandomSampler
import pandas as pd
import numpy as np
import csv
from helper import CustomDataset, Net, CustomDatasetParquet
from sklearn.preprocessing import StandardScaler, MinMaxScaler
torch.manual_seed(40)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Standardization, Normalization, No scaling
# 0 - No scaling, 1 - Standardization, 2 - Normalization
SCALING_FLAG=2
# TODO: Extend to all states by the end
all_states = ['idaho.parq', 'Maine.parq']
# all_states = ['California.parq', 'Florida.parq', 'idaho.parq',
# 'Louisiana.parq', 'Maine.parq', 'NorthCarolina.parq',
# 'Texas.parq']
# Change the train/val and test set to account for all combinations (total 7 combinations)
train_val_states = all_states[:-1]
test_state = all_states[-1]
train_val_df = pd.DataFrame()
test_df = pd.read_parquet('Vertices_Labels/' + test_state)
# Read entire training data
for file in train_val_states:
print(f"Reading {file}---")
df = pd.read_parquet('Vertices_Labels/' + file)
train_val_df = train_val_df.append(df, ignore_index=True)
# Moving 'CASE' as last column
columns = train_val_df.columns.tolist()
columns.append(columns.pop(2))
train_val_df = train_val_df[columns]
test_df = test_df[columns]
# TODO: Dropping NaNs rows
train_val_df.dropna(inplace=True)
test_df.dropna(inplace=True)
# print(train_val_df.columns)
# print(train_val_df.head())
# print("-"*30)
def scale_features(SCALING_FLAG, train_val_df):
# Different types of scaling features
# Decision trees don't need scaling, NN needs, so have both
if SCALING_FLAG == 0:
rescaled_train_val_df = train_val_df
rescaled_test_df = test_df
if SCALING_FLAG == 1:
columns_to_standardize = train_val_df.columns.tolist()[:-1]
rescaled_train_val_df, rescaled_test_df = train_val_df.copy(), test_df.copy()
std_scaler = StandardScaler()
rescaled_train_val_df[columns_to_standardize] = std_scaler.fit_transform(rescaled_train_val_df[columns_to_standardize])
rescaled_test_df[columns_to_standardize] = std_scaler.transform(rescaled_test_df[columns_to_standardize])
if SCALING_FLAG == 2:
columns_to_standardize = train_val_df.columns.tolist()[:-1]
rescaled_train_val_df, rescaled_test_df = train_val_df.copy(), test_df.copy()
std_scaler = MinMaxScaler()
rescaled_train_val_df[columns_to_standardize] = std_scaler.fit_transform(rescaled_train_val_df[columns_to_standardize])
rescaled_test_df[columns_to_standardize] = std_scaler.transform(rescaled_test_df[columns_to_standardize])
return rescaled_train_val_df, rescaled_test_df
rescaled_train_val_df, rescaled_test_df = scale_features(SCALING_FLAG, train_val_df)
# Dealing with Class Imbalance ratio by sampling the minority class more!
labels_unique, count = np.unique(rescaled_train_val_df['case'], return_counts=True)
print(f"Number of samples with their counts are: {labels_unique},{count}")
class_weights = [sum(count)/c for c in count]
print(f"Class weights needed for resampling: {class_weights}")
combined_dataset = CustomDatasetParquet(rescaled_train_val_df)
# Train and Validation splits
train_size = int(0.8 * len(combined_dataset))
val_size = len(combined_dataset) - (train_size)
test_dataset = CustomDatasetParquet(rescaled_test_df)
test_loader = DataLoader(test_dataset, batch_size=8192)
print(f"Train and val size are {train_size}, {val_size}")
train_dataset, val_dataset = torch.utils.data.random_split(combined_dataset, [train_size, val_size])
print("Random split done")
example_weights = [class_weights[e['output']] for e in train_dataset]
print(f"Example weights unique items are: {set(example_weights)}")
# indices = [i for i, x in enumerate(example_weights) if x == 329.3644859813084]
# print(len(indices))
print(f"Length of training and validation dataset is {train_size}, {val_size}")
sampler = WeightedRandomSampler(example_weights, train_size, replacement=True)
# print(f"First 10 elements in sampler are: {list(sampler)[:10]}")
# Set up the data loaders
train_loader = DataLoader(train_dataset, batch_size=8196, sampler=sampler)
val_loader = DataLoader(val_dataset, batch_size=8196)
### Code to verify that sampler is working and we are getting samples in a balanced way!!
# a = 0
# for data in train_loader:
# print(np.unique(data['output'], return_counts=True))
# a += 1
# if a == 10:
# break
# NN
net = Net()
criterion = nn.BCELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
net.to(device)
def train_validate_loop(num_epochs, model_name):
min_loss = float('inf')
# Train the neural network
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
data['lat'] = data['lat'].float().to(device)
data['long'] = data['long'].float().to(device)
data['len_forward'] = data['len_forward'].float().to(device)
data['len_backward'] = data['len_backward'].float().to(device)
data['angle'] = data['angle'].float().to(device)
data['offset'] = data['offset'].float().to(device)
data['area'] = data['area'].float().to(device)
data['arc'] = data['arc'].float().to(device)
data['ratio1'] = data['ratio1'].float().to(device)
data['ratio2'] = data['ratio2'].float().to(device)
data['output'] = data['output'].float().to(device)
inputs = torch.stack([data['lat'], data['long'], data['len_forward'], data['len_backward'],
data['angle'], data['offset'], data['area'], data['arc'],
data['ratio1'], data['ratio2']], dim=1)
labels = torch.tensor(data['output']).unsqueeze(1)
# print(inputs)
# print(labels[:10])
optimizer.zero_grad()
outputs = net(inputs)
# print(outputs[:10])
# print("-------------------------------------")
# break
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d], Training Loss: %.4f' % (epoch+1, running_loss/len(train_loader)))
# Evaluate the neural network on the test set
correct = 0
total = 0
running_loss = 0.0
with torch.no_grad():
for i, data in enumerate(val_loader):
data['lat'] = data['lat'].float().to(device)
data['long'] = data['long'].float().to(device)
data['len_forward'] = data['len_forward'].float().to(device)
data['len_backward'] = data['len_backward'].float().to(device)
data['angle'] = data['angle'].float().to(device)
data['offset'] = data['offset'].float().to(device)
data['area'] = data['area'].float().to(device)
data['arc'] = data['arc'].float().to(device)
data['ratio1'] = data['ratio1'].float().to(device)
data['ratio2'] = data['ratio2'].float().to(device)
data['output'] = data['output'].float().to(device)
inputs = torch.stack([data['lat'], data['long'], data['len_forward'], data['len_backward'],
data['angle'], data['offset'], data['area'], data['arc'],
data['ratio1'], data['ratio2']], dim=1)
labels = torch.tensor(data['output']).unsqueeze(1)
outputs = net(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
if running_loss < min_loss:
min_loss = running_loss
torch.save(net, model_name)
print('Epoch [%d], Validation Loss: %.4f' % (epoch+1, running_loss/len(val_loader)))
print(f"Total number of Validation points are: {total} and correct points are {correct}")
print('Accuracy of the network on the validation data: %d %%' % (100 * correct / total))
def test_loop(model_name, output_file, col_name):
net = torch.load(model_name)
total, correct = 0, 0
predicted_values = []
with torch.no_grad():
for data in test_loader:
data['lat'] = data['lat'].float().to(device)
data['long'] = data['long'].float().to(device)
data['len_forward'] = data['len_forward'].float().to(device)
data['len_backward'] = data['len_backward'].float().to(device)
data['angle'] = data['angle'].float().to(device)
data['offset'] = data['offset'].float().to(device)
data['area'] = data['area'].float().to(device)
data['arc'] = data['arc'].float().to(device)
data['ratio1'] = data['ratio1'].float().to(device)
data['ratio2'] = data['ratio2'].float().to(device)
data['output'] = data['output'].float().to(device)
inputs = torch.stack([data['lat'], data['long'], data['len_forward'], data['len_backward'],
data['angle'], data['offset'], data['area'], data['arc'],
data['ratio1'], data['ratio2']], dim=1)
labels = torch.tensor(data['output']).unsqueeze(1)
outputs = net(inputs)
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
predicted_values.extend(predicted.cpu().numpy().astype(int).flatten().tolist())
print(f"Total number of test points are: {total} and correct points are {correct}")
print('Accuracy of the network on the test data: %d %%' % (100 * correct / total))
test_df[col_name] = predicted_values
test_df.to_parquet(output_file, index=False)
train_validate_loop(num_epochs=20, model_name="idaho_maine.pt")
test_loop(model_name="idaho_maine.pt", output_file='maine_pred_normalization.parquet', col_name='normalized_preds')