Skip to content

Commit db6ae67

Browse files
committed
version 1.0.41
1 parent 2a479bb commit db6ae67

File tree

53 files changed

+2086
-801
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+2086
-801
lines changed

README.md

+9-54
Original file line numberDiff line numberDiff line change
@@ -55,62 +55,18 @@ Visit following repos to see projects contributed by Azure ML users:
5555
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
5656
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
5757

58-
## Azure Machine Learning Resources & Links
59-
## Product Documentation
60-
- [Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/)
61-
- [Azure Machine Learning Studio](https://docs.microsoft.com/en-us/azure/machine-learning/studio/)
62-
63-
## Product Team Blogs
64-
- [What’s new in Azure Machine Learning service](https://aka.ms/aml-blog-whats-new)
65-
- [Announcing automated ML capability in Azure Machine Learning](https://aka.ms/aml-blog-automl)
66-
- [Experimentation using Azure Machine Learning](https://aka.ms/aml-blog-experimentation)
67-
- [Azure AI – Making AI real for business](https://aka.ms/aml-blog-overview)
68-
69-
## Community Blogs
70-
- [Power Bat – How Spektacom is Powering the Game of Cricket with Microsoft AI](https://blogs.technet.microsoft.com/machinelearning/2018/10/11/power-bat-how-spektacom-is-powering-the-game-of-cricket-with-microsoft-ai/)
71-
72-
## Ignite 2018 Public Preview Launch Sessions
73-
- [AI with Azure Machine Learning services: Simplifying the data science process](https://myignite.techcommunity.microsoft.com/sessions/66248)
74-
- [AI TechTalk: Azure Machine Learning SDK - a walkthrough](https://myignite.techcommunity.microsoft.com/sessions/66265)
75-
- [AI for an intelligent cloud and intelligent edge: Discover, deploy, and manage with Azure ML services](https://myignite.techcommunity.microsoft.com/sessions/65389)
76-
- [Generating high quality models efficiently using Automated ML and Hyperparameter Tuning](https://myignite.techcommunity.microsoft.com/sessions/66245)
77-
- [AI for pros: Deep learning with PyTorch using the Azure Data Science Virtual Machine and scaling training with Azure ML](https://myignite.techcommunity.microsoft.com/sessions/66244)
78-
79-
## Get-started Videos on YouTube
80-
- [Get started with Python SDK](https://youtu.be/VIsXeTuW3FU)
81-
- [Get started from Azure Portal](https://youtu.be/lCkYUHV86Mk)
82-
83-
84-
## Third Party Articles
85-
- [Azure’s new machine learning features embrace Python](https://www.infoworld.com/article/3306840/azure/azures-new-machine-learning-features-embrace-python.html) (InfoWorld)
86-
- [How to use Azure ML in Windows 10](https://www.infoworld.com/article/3308381/azure/how-to-use-azure-ml-in-windows-10.html) (InfoWorld)
87-
- [How Azure ML Streamlines Cloud-based Machine Learning](https://thenewstack.io/how-the-azure-ml-streamlines-cloud-based-machine-learning/) (The New Stack)
88-
- [Facebook launches PyTorch 1.0 with integrations for Google Cloud, AWS, and Azure Machine Learning](https://venturebeat.com/2018/10/02/facebook-launches-pytorch-1-0-integrations-for-google-cloud-aws-and-azure-machine-learning/) (VentureBeat)
89-
- [How Microsoft Uses Machine Learning to Help You Build Machine Learning Pipelines](https://towardsdatascience.com/how-microsoft-uses-machine-learning-to-help-you-build-machine-learning-pipelines-be75f710613b) (Towards Data Science)
90-
- [Microsoft's Machine Learning Tools for Developers Get Smarter](https://techcrunch.com/2018/09/24/microsofts-machine-learning-tools-for-developers-get-smarter/) (TechCrunch)
91-
- [Microsoft introduces Azure service to automatically build AI models](https://venturebeat.com/2018/09/24/microsoft-introduces-azure-service-to-automatically-build-ai-models/) (VentureBeat)
92-
93-
## Community Projects
94-
- [Use Papermill with Azure ML](https://github.com/jreynolds01/papermill_execution_azureml/)
95-
- [Fashion MNIST](https://github.com/amynic/azureml-sdk-fashion)
96-
- Keras on Databricks
97-
- [Samples from CSS](https://github.com/Azure/AMLSamples)
98-
99-
100-
## Azure Machine Learning Studio Resources
101-
- [A-Z Machine Learning using Azure Machine Learning (AzureML)](https://www.udemy.com/machine-learning-using-azureml/)
102-
- [Machine Learning In The Cloud With Azure Machine Learning](https://www.udemy.com/machine-learning-in-the-cloud-with-azure-machine-learning/)
103-
- [How to Become A Data Scientist Using Azure Machine Learning](https://www.udemy.com/azure-machine-learning-introduction/)
104-
- [Learn Azure Machine Learning from scratch](https://www.udemy.com/learn-azure-machine-learning-from-scratch/)
105-
- [Azure Machine Learning Studio PowerShell Module](https://aka.ms/amlps)
106-
107-
## Forum Help
108-
- [Azure Machine Learning service](https://social.msdn.microsoft.com/Forums/en-US/home?forum=AzureMachineLearningService)
109-
- [Azure Machine Learning Studio](https://social.msdn.microsoft.com/forums/azure/en-US/home?forum=MachineLearning)
58+
## Data/Telemetry
59+
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
60+
61+
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
11062

63+
```sh
64+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)"
65+
```
66+
This URL will be slightly different depending on the file.
11167

11268
## Data/Telemetry
113-
This repository collects usage data and sends it to Microsoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
69+
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
11470

11571
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
11672

@@ -119,5 +75,4 @@ To opt out of tracking, please go to the raw markdown or .ipynb files and remove
11975
```
12076
This URL will be slightly different depending on the file.
12177

122-
12378
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/README.png)

how-to-use-azureml/README.md

+1-4
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
Learn how to use Azure Machine Learning services for experimentation and model management.
44

5-
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration Notebook](../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace. Then, run the notebooks in following recommended order.
5+
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
66

77
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
88
* [train-on-local](./training/train-on-local): Learn how to submit a run to local computer and use Azure ML managed run configuration.
@@ -15,6 +15,3 @@ If you are using an Azure Machine Learning Notebook VM, you are all set. Otherw
1515
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
1616

1717
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
18-
19-
20-
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)

how-to-use-azureml/automated-machine-learning/automl_env.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ dependencies:
1010
- urllib3<1.24
1111
- scipy>=1.0.0,<=1.1.0
1212
- scikit-learn>=0.19.0,<=0.20.3
13-
- pandas>=0.22.0,<0.23.0
13+
- pandas>=0.22.0,<=0.23.4
1414
- py-xgboost<=0.80
1515

1616
- pip:

how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb

+10-3
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},
@@ -18,7 +25,7 @@
1825
"\n",
1926
"## Contents\n",
2027
"1. [Introduction](#Introduction)\n",
21-
"1. [Setup](#setup)\n",
28+
"1. [Setup](#Setup)\n",
2229
"1. [Train](#Train)\n",
2330
"1. [Deploy](#Deploy)\n",
2431
"1. [Test](#Test)"
@@ -49,7 +56,7 @@
4956
"cell_type": "markdown",
5057
"metadata": {},
5158
"source": [
52-
"## Setup \n",
59+
"## Setup\n",
5360
"\n",
5461
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
5562
]
@@ -500,4 +507,4 @@
500507
},
501508
"nbformat": 4,
502509
"nbformat_minor": 2
503-
}
510+
}

how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.ipynb

+81-7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},
@@ -66,11 +73,12 @@
6673
"import numpy as np\n",
6774
"import pandas as pd\n",
6875
"from sklearn import datasets\n",
76+
"from sklearn.model_selection import train_test_split\n",
6977
"\n",
7078
"import azureml.core\n",
7179
"from azureml.core.experiment import Experiment\n",
7280
"from azureml.core.workspace import Workspace\n",
73-
"from azureml.train.automl import AutoMLConfig"
81+
"from azureml.train.automl import AutoMLConfig, constants"
7482
]
7583
},
7684
{
@@ -106,7 +114,7 @@
106114
"source": [
107115
"## Data\n",
108116
"\n",
109-
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
117+
"This uses scikit-learn's [load_iris](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) method."
110118
]
111119
},
112120
{
@@ -115,11 +123,17 @@
115123
"metadata": {},
116124
"outputs": [],
117125
"source": [
118-
"digits = datasets.load_digits()\n",
126+
"iris = datasets.load_iris()\n",
127+
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
128+
" iris.target, \n",
129+
" test_size=0.2, \n",
130+
" random_state=0)\n",
119131
"\n",
120-
"# Exclude the first 100 rows from training so that they can be used for test.\n",
121-
"X_train = digits.data[100:,:]\n",
122-
"y_train = digits.target[100:]"
132+
"# Convert the X_train and X_test to pandas DataFrame and set column names,\n",
133+
"# This is needed for initializing the input variable names of ONNX model, \n",
134+
"# and the prediction with the ONNX model using the inference helper.\n",
135+
"X_train = pd.DataFrame(X_train, columns=['c1', 'c2', 'c3', 'c4'])\n",
136+
"X_test = pd.DataFrame(X_test, columns=['c1', 'c2', 'c3', 'c4'])"
123137
]
124138
},
125139
{
@@ -155,9 +169,10 @@
155169
" primary_metric = 'AUC_weighted',\n",
156170
" iteration_timeout_minutes = 60,\n",
157171
" iterations = 10,\n",
158-
" verbosity = logging.INFO,\n",
172+
" verbosity = logging.INFO, \n",
159173
" X = X_train, \n",
160174
" y = y_train,\n",
175+
" preprocess=True,\n",
161176
" enable_onnx_compatible_models=True,\n",
162177
" path = project_folder)"
163178
]
@@ -253,6 +268,65 @@
253268
"onnx_fl_path = \"./best_model.onnx\"\n",
254269
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
255270
]
271+
},
272+
{
273+
"cell_type": "markdown",
274+
"metadata": {},
275+
"source": [
276+
"### Predict with the ONNX model, using onnxruntime package"
277+
]
278+
},
279+
{
280+
"cell_type": "code",
281+
"execution_count": null,
282+
"metadata": {},
283+
"outputs": [],
284+
"source": [
285+
"import sys\n",
286+
"import json\n",
287+
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
288+
"\n",
289+
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
290+
" python_version_compatible = True\n",
291+
"else:\n",
292+
" python_version_compatible = False\n",
293+
"\n",
294+
"try:\n",
295+
" import onnxruntime\n",
296+
" from azureml.automl.core.onnx_convert import OnnxInferenceHelper \n",
297+
" onnxrt_present = True\n",
298+
"except ImportError:\n",
299+
" onnxrt_present = False\n",
300+
"\n",
301+
"def get_onnx_res(run):\n",
302+
" res_path = '_debug_y_trans_converter.json'\n",
303+
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
304+
" with open(res_path) as f:\n",
305+
" onnx_res = json.load(f)\n",
306+
" return onnx_res\n",
307+
"\n",
308+
"if onnxrt_present and python_version_compatible: \n",
309+
" mdl_bytes = onnx_mdl.SerializeToString()\n",
310+
" onnx_res = get_onnx_res(best_run)\n",
311+
"\n",
312+
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
313+
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(X_test)\n",
314+
"\n",
315+
" print(pred_onnx)\n",
316+
" print(pred_prob_onnx)\n",
317+
"else:\n",
318+
" if not python_version_compatible:\n",
319+
" print('Please use Python version 3.6 to run the inference helper.') \n",
320+
" if not onnxrt_present:\n",
321+
" print('Please install the onnxruntime package to do the prediction with ONNX model.')"
322+
]
323+
},
324+
{
325+
"cell_type": "code",
326+
"execution_count": null,
327+
"metadata": {},
328+
"outputs": [],
329+
"source": []
256330
}
257331
],
258332
"metadata": {

how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/dataprep-remote-execution/auto-ml-dataprep-remote-execution.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep-remote-execution/auto-ml-dataprep-remote-execution.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb

+7
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,13 @@
99
"Licensed under the MIT License."
1010
]
1111
},
12+
{
13+
"cell_type": "markdown",
14+
"metadata": {},
15+
"source": [
16+
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.png)"
17+
]
18+
},
1219
{
1320
"cell_type": "markdown",
1421
"metadata": {},

0 commit comments

Comments
 (0)