-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_data.py
345 lines (307 loc) · 13.6 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# SVEN: https://github.com/gao-lab/SVEN
import argparse
import os
import subprocess
import h5py
import numpy as np
from Bio import SeqIO
from Bio.Seq import Seq
from sven.data import onehot_code
from sven.utils import generate_chr_size_dict, generate_chr_gene_dict, pad_seq, get_relative_center
parser = argparse.ArgumentParser(description='Prepare data for prediction')
parser.add_argument('inputfile', type = str, help = 'Input TSS file')
parser.add_argument('--type', type = str, default = "tss", help = 'Type of input file: tss, sv or snv. Default is tss.')
parser.add_argument('--work_dir', type = str, default = "./work_dir/", help = 'Work directory, default is ./work_dir/')
parser.add_argument('--bedtools_path', type = str, default = "bedtools", help = 'Path to bedtools, default is bedtools')
parser.add_argument('--seq_len', type = int, default = 131_072, help = 'Sequence length, default is 131_072. Do not change this value.')
parser.add_argument('--ignore_rRNA', type = str, default = "true", help = 'Ignore rRNA genes, default is true. Only work in type sv.')
args = parser.parse_args()
ref_genome = "./resources/hg38.fa"
half_len = int(args.seq_len / 2)
# generate chromosome size dictionary
chr_size_dict = generate_chr_size_dict()
def extract_tss_bed():
input_file = np.loadtxt(args.inputfile, delimiter="\t", dtype = str, skiprows = 1)
output = []
for x in range(input_file.shape[0]):
chr_info = input_file[x][0]
tss_pos = int(input_file[x][1]) - 1 # 1-based to 0-based
strand = input_file[x][2]
gene_name = input_file[x][3]
err = "ok"
pos_start = tss_pos - half_len
pos_end = tss_pos + half_len
if pos_start < 0:
pos_start = 0
err = "left"
if pos_end > chr_size_dict[chr_info]:
pos_end = chr_size_dict[chr_info]
err = "right"
output.append([chr_info, pos_start, pos_end, gene_name, strand, err])
output = np.array(output)
np.savetxt(args.work_dir + "temp.bed", output, delimiter = "\t", fmt = "%s")
print("##### Success: extract bed file. #####")
def extract_sv_bed():
chr_gene_dict = generate_chr_gene_dict(args.ignore_rRNA)
# check header of input file: start with # or not
with open(args.inputfile, 'r') as f:
header = f.readline()
if header[0] == "#":
skiprows = 0
else:
skiprows = 1
input_file = np.loadtxt(args.inputfile, delimiter="\t", dtype = str, skiprows = skiprows)
ref_bed = [] # list for sv info
sv_allele = [] # list for ref allele and alt allele
for x in range(input_file.shape[0]):
# get basic info
chr_info = input_file[x][0]
sv_start = int(input_file[x][1]) - 1 # 1-based to 0-based
ref_allele = input_file[x][2]
alt_allele = input_file[x][3]
sv_info = input_file[x][4]
# get other info
sv_length = abs(len(ref_allele) - len(alt_allele)) # for insertion and deletion
if len(ref_allele) > len(alt_allele):
sv_type = "DEL"
elif len(ref_allele) < len(alt_allele):
sv_type = "INS"
else:
print("##### Warning: unsupported SV %s, skip. #####" % sv_info)
continue
sv_end = sv_start + sv_length
# check if all bases of SV are in 131kb regions
sv_pos_array = np.array([sv_start, sv_end]).reshape((1, 2))
tss_pos_list = chr_gene_dict[chr_info][:, 1].astype(int).reshape((-1,1))
distance_array = np.abs(sv_pos_array - tss_pos_list)
sv_gene_pos = np.where((distance_array[:,0] < half_len) & (distance_array[:,1] < half_len))[0]
sv_pair_num = sv_gene_pos.shape[0]
if sv_pair_num == 0:
print("##### Warning: SV %s is not in 131kb region of any gene, skip. #####" % sv_info)
continue
# get sv-gene pairs
for y in range(sv_pair_num):
# get paired gene info
err = "ok"
gene_tss_pos = int(chr_gene_dict[chr_info][sv_gene_pos[y], 1])
gene_strand = chr_gene_dict[chr_info][sv_gene_pos[y], 2]
gene_name = chr_gene_dict[chr_info][sv_gene_pos[y], 3]
# get bed info
ref_pos_start = gene_tss_pos - half_len - sv_length
ref_pos_end = gene_tss_pos + half_len + sv_length
# check range of position
if ref_pos_start < 0:
ref_pos_start = 0
err = "left"
if ref_pos_end > chr_size_dict[chr_info]:
ref_pos_end = chr_size_dict[chr_info]
err = "right"
# append bed info
ref_bed.append([chr_info, ref_pos_start, ref_pos_end, gene_name, gene_strand, err,
sv_type, sv_start, sv_end, sv_length, gene_tss_pos, sv_info])
sv_allele.append([ref_allele, alt_allele])
ref_bed = np.array(ref_bed)
sv_allele = np.array(sv_allele)
if ref_bed.shape[0] == 0:
raise Exception("##### Warning: No SVs in 131kb region of any gene. Exit. #####")
else:
print("##### Construct %d SV-gene pairs. #####" % ref_bed.shape[0])
# save files
np.savetxt(args.work_dir + "temp.bed", ref_bed, delimiter = "\t", fmt = "%s")
np.savetxt(args.work_dir + "temp_sv_allele.txt", sv_allele, delimiter = "\t", fmt = "%s")
print("##### Success: extract bed file. #####")
def extract_snv_bed():
# check header of input file: start with # or not
with open(args.inputfile, 'r') as f:
header = f.readline()
if header[0] == "#":
skiprows = 0
else:
skiprows = 1
input_file = np.loadtxt(args.inputfile, delimiter="\t", dtype = str, skiprows = skiprows)
output = []
for x in range(input_file.shape[0]):
chr_info = input_file[x][0]
snv_pos = int(input_file[x][1]) - 1
ref_allele = input_file[x][2]
alt_allele = input_file[x][3]
snv_info = input_file[x][4]
# confirm if variant is a SNV in required format
if len(ref_allele) != 1 or len(alt_allele) != 1:
print("##### Warning: unsupported SNV %s, skip. #####" % snv_info)
continue
err = "ok"
ref_start = snv_pos - half_len
ref_end = snv_pos + half_len
if ref_start < 0:
ref_start = 0
err = "left"
if ref_end > chr_size_dict[chr_info]:
ref_end = chr_size_dict[chr_info]
err = "right"
output.append([chr_info, ref_start, ref_end, ref_allele, alt_allele, err])
output = np.array(output)
np.savetxt(args.work_dir + "temp.bed", output, delimiter = "\t", fmt = "%s")
print("##### Success: extract bed file. #####")
def extract_seq():
# extract sequences from bed file
in_bed = args.work_dir + "temp.bed"
out_fasta = args.work_dir + "temp.fa"
# ignore strand information here
cmd = args.bedtools_path + ' getfasta -fi %s -bed %s -fo %s' % (ref_genome, in_bed, out_fasta)
return_code = subprocess.call(cmd, shell=True)
if return_code != 0:
raise Exception("##### Error: extract sequences from bed file. Exit. #####")
print("##### Success: extract sequences from bed file. #####")
def snv_to_h5():
ref_bed = np.loadtxt(args.work_dir + "temp.bed", delimiter = "\t", dtype = str)
in_fasta = args.work_dir + "temp.fa"
ref_seq_list = []
alt_seq_list = []
sequence_info = open(in_fasta, 'r')
for x, record in enumerate(SeqIO.parse(sequence_info, "fasta")):
seq_record = str(record.seq).upper()
err_info = ref_bed[x][5]
# check length of sequence
if len(seq_record) < args.seq_len:
seq_record = pad_seq(err_info, seq_record, args.seq_len)
#check allele
ref_allele = ref_bed[x][3]
alt_allele = ref_bed[x][4]
#replace ref allele with alt allele
ref_seq = seq_record[:half_len] + ref_allele + seq_record[half_len + 1:]
alt_seq = seq_record[:half_len] + alt_allele + seq_record[half_len + 1:]
# append
ref_seq_list.append(ref_seq)
alt_seq_list.append(alt_seq)
sequence_info.close()
os.remove(in_fasta)
seq_num = len(ref_seq_list)
print("##### Processing %d sequence pairs. #####" % seq_num)
# convert to one-hot
ref_seq_code = np.zeros((seq_num, args.seq_len, 4), dtype = np.int32)
alt_seq_code = np.zeros((seq_num, args.seq_len, 4), dtype = np.int32)
for j in range(seq_num):
ref_sequence = ref_seq_list[j]
alt_sequence = alt_seq_list[j]
onehot_code(ref_sequence, ref_seq_code, j)
onehot_code(alt_sequence, alt_seq_code, j)
# save to h5
with h5py.File(args.work_dir + "temp.h5", 'w') as hf:
hf.create_dataset("ref_seq", data = ref_seq_code)
hf.create_dataset("alt_seq", data = alt_seq_code)
print("##### Success: sequence one-hot encoding. #####")
def sv_to_h5():
ref_bed = np.loadtxt(args.work_dir + "temp.bed", delimiter = "\t", dtype = str)
sv_allele = np.loadtxt(args.work_dir + "temp_sv_allele.txt", delimiter = "\t", dtype = str)
in_fasta = args.work_dir + "temp.fa"
ref_seq_list = []
sv_seq_list = []
sequence_info = open(in_fasta, 'r')
for x, record in enumerate(SeqIO.parse(sequence_info, "fasta")):
seq_record = str(record.seq).upper()
err_info = ref_bed[x][5]
sv_length = int(ref_bed[x][9])
target_length = args.seq_len + 2*sv_length
if len(seq_record) < target_length:
seq_record = pad_seq(err_info, seq_record, target_length)
# get sv info
sv_start = int(ref_bed[x][7])
gene_tss_pos = int(ref_bed[x][10])
sv_type = ref_bed[x][6]
strand = ref_bed[x][4]
# calculate sv relative position to TSS
sv_rel_pos = sv_start - (gene_tss_pos - half_len - sv_length)
tss_rel_pos = half_len + sv_length
# get ref and alt allele
ref_allele = sv_allele[x, 0]
alt_allele = sv_allele[x, 1]
# replace ref allele with alt allele
ref_allele_length = len(ref_allele)
alt_allele_length = len(alt_allele)
seq_record_ref = seq_record[:sv_rel_pos] + ref_allele + seq_record[sv_rel_pos + ref_allele_length:]
seq_record_alt = seq_record[:sv_rel_pos] + alt_allele + seq_record[sv_rel_pos + ref_allele_length:]
# append seq_record_ref
seq_record_ref = seq_record_ref[tss_rel_pos - half_len : tss_rel_pos + half_len]
if strand == "-":
seq_record_ref = str(Seq(seq_record_ref).reverse_complement())
ref_seq_list.append(seq_record_ref)
# get new tss_rel_pos
seq_rel_center = get_relative_center(sv_rel_pos, tss_rel_pos, sv_length, sv_type)
# append seq_record_alt
seq_record_alt = seq_record_alt[seq_rel_center - half_len : seq_rel_center + half_len]
if strand == "-":
seq_record_alt = str(Seq(seq_record_alt).reverse_complement())
sv_seq_list.append(seq_record_alt)
sequence_info.close()
os.remove(in_fasta)
seq_num = len(ref_seq_list)
print("##### Processing %d sequence pairs. #####" % seq_num)
# convert to one-hot
ref_seq_code = np.zeros((seq_num, args.seq_len, 4), dtype = np.int32)
sv_seq_code = np.zeros((seq_num, args.seq_len, 4), dtype = np.int32)
for j in range(seq_num):
ref_sequence = ref_seq_list[j]
sv_sequence = sv_seq_list[j]
onehot_code(ref_sequence, ref_seq_code, j)
onehot_code(sv_sequence, sv_seq_code, j)
# save to h5
with h5py.File(args.work_dir + "temp.h5", 'w') as hf:
hf.create_dataset("ref_seq", data = ref_seq_code)
hf.create_dataset("alt_seq", data = sv_seq_code)
print("##### Success: sequence one-hot encoding. #####")
def tss_to_h5():
in_fasta = args.work_dir + "temp.fa"
bed_info = np.loadtxt(args.work_dir + "temp.bed", delimiter = "\t", dtype = str)
seq_list = []
sequence_info = open(in_fasta, 'r')
for x, record in enumerate(SeqIO.parse(sequence_info, "fasta")):
seq_record = str(record.seq).upper()
strand = bed_info[x][4]
err_info = bed_info[x][5]
# check length of sequence
if len(seq_record) < args.seq_len:
seq_record = pad_seq(err_info, seq_record, args.seq_len)
# reverse complement
if strand == "-":
seq_record = str(Seq(seq_record).reverse_complement())
# save sequence
seq_list.append(seq_record)
sequence_info.close()
os.remove(in_fasta)
seq_num = len(seq_list)
print("##### Processing %d sequences. #####" % seq_num)
# convert to one-hot
seq_code = np.zeros((seq_num, args.seq_len, 4), dtype = np.int32)
for j in range(seq_num):
sequence = seq_list[j]
onehot_code(sequence, seq_code, j)
# save to h5
with h5py.File(args.work_dir + "temp.h5", 'w') as hf:
hf.create_dataset("seq", data = seq_code)
print("##### Success: sequence one-hot encoding. #####")
if __name__ == "__main__":
# create temp dir
if not os.path.exists(args.work_dir):
os.makedirs(args.work_dir)
# check if bedtools is installed
if subprocess.call("command -v bedtools", shell=True) != 0:
raise Exception("bedtools is not installed. Please install bedtools first.")
# extract bed
if args.type == "tss":
extract_tss_bed()
elif args.type == "sv":
extract_sv_bed()
elif args.type == "snv":
extract_snv_bed()
else:
raise Exception("Unsupported type of input file: %s. Please use tss, sv or snv." % args.type)
# extract sequence
extract_seq()
# convert sequence to h5
if args.type == "tss":
tss_to_h5()
elif args.type == "sv":
sv_to_h5()
else:
snv_to_h5()