-
Notifications
You must be signed in to change notification settings - Fork 0
/
pair_plot.py
319 lines (244 loc) · 10.6 KB
/
pair_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
from config import args_parser
from dataset.data_classical import preprocess_dataset, split_dataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
file_path = '/Users/gautamjajoo/Desktop/FAL/dataset/Edge-IIoTset/ML-EdgeIIoT-dataset.csv'
if __name__ == '__main__':
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
torch.manual_seed(args.seed)
df = pd.read_csv(file_path, low_memory=False)
num_classes = df['Attack_type'].nunique()
input_features = df.drop(['Attack_type'], axis=1).shape[1]
print("Number of classes:", num_classes)
print("Number of input features:", input_features)
X_train, X_test, y_train, y_test = split_dataset(df)
unique_classes = y_train.unique()
class_sample_counts = [np.sum(y_train == cls) for cls in unique_classes]
for cls, count in zip(unique_classes, class_sample_counts):
print(f"Class {cls}: {count} samples")
unique_classes = y_test.unique()
class_sample_counts = [np.sum(y_test == cls) for cls in unique_classes]
for cls, count in zip(unique_classes, class_sample_counts):
print(f"Class {cls}: {count} samples")
# Feature scaling using min-max scaling
scaler = MinMaxScaler()
scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns)
scaled_X_test = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns)
X_train = scaled_X_train
X_test = scaled_X_test
X_train = X_train.to_numpy()
X_test = X_test.to_numpy()
y_train = y_train.to_numpy()
y_test = y_test.to_numpy()
print("Length of train size: ")
# Print the shapes of the resulting datasets
print("Training set shape:", X_train.shape)
print("Test set shape:", X_test.shape)
print("Done...")
# Initialize an empty classification_reports dictionary
classification_reports = {}
def plot_confusion_matrix(cm, model_name):
plt.figure(figsize=(10, 7))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Truth')
plt.title(f'{model_name} - Confusion Matrix')
plt.show()
def plot_accuracy_bar(accuracies):
plt.figure(figsize=(8, 5))
plt.bar(accuracies.keys(), accuracies.values())
plt.xlabel('Models')
plt.ylabel('Accuracy')
plt.title('Accuracy Comparison Across Models')
plt.ylim([0, 1])
# plt.xticks(rotation=45)
for model, accuracy in accuracies.items():
plt.text(model, accuracy, f'{accuracy:.4f}', ha='center', va='bottom')
plt.show()
# Logistic Regression
classifier = LogisticRegression(random_state=42, max_iter=5000)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
acc_logistic = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
classification_reports["logistic"] = report
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "Logistic Regression")
print(f'Accuracy: {acc_logistic * 100:.6f}%')
print("\nClassification Report:\n", report)
# Naive Bayes
classifier = GaussianNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
acc_naive_bayes = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "Naive Bayes")
classification_reports["naive_bayes"] = report
print(f'Accuracy: {acc_naive_bayes * 100:.6f}%')
print("\nClassification Report:\n", report)
# Decision Tree
clf = DecisionTreeClassifier(criterion = 'entropy', random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
acc_decision_tree = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
classification_reports["decision_tree"] = report
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "Decision Tree")
print(f'Accuracy: {acc_decision_tree * 100:.6f}%')
print("\nClassification Report:\n", report)
# Random Forest
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 42)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
acc_random_forest = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
classification_reports["random_forest"] = report
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "Random Forest")
print(f'Accuracy: {acc_random_forest * 100:.6f}%')
print("\nClassification Report:\n", report)
# SVM
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
acc_svm = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
classification_reports["svm"] = report
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "SVM")
print(f'Accuracy: {acc_svm * 100:.6f}% \n')
print("Classification Report:\n", report)
# KNN
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train, y_train)
y_pred = knn_classifier.predict(X_test)
acc_knn = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
classification_reports["knn"] = report
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, "KNN")
print(f'Accuracy: {acc_knn * 100:.6f}%')
print("\nClassification Report:\n \n", report)
accuracies = {
"Logistic Regression": acc_logistic,
"Naive Bayes": acc_naive_bayes,
"Decision Tree": acc_decision_tree,
"Random Forest": acc_random_forest,
"SVM": acc_svm,
"KNN": acc_knn
}
plot_accuracy_bar(accuracies)
class_mapping = {
'Normal': 0,
'MITM': 1,
'Uploading': 2,
'Ransomware': 3,
'SQL_injection': 4,
'DDoS_HTTP': 5,
'DDoS_TCP': 6,
'Password': 7,
'Port_Scanning': 8,
'Vulnerability_scanner': 9,
'Backdoor': 10,
'XSS': 11,
'Fingerprinting': 12,
'DDoS_UDP': 13,
'DDoS_ICMP': 14
}
# Define class names
class_names = [
'Normal',
'MITM',
'Uploading',
'Ransomware',
'SQL_injection',
'DDoS_HTTP',
'DDoS_TCP',
'Password',
'Port_Scanning',
'Vulnerability_scanner',
'Backdoor',
'XSS',
'Fingerprinting',
'DDoS_UDP',
'DDoS_ICMP',
]
# Create a figure for precision
fig_precision, axs_precision = plt.subplots(figsize=(12, 8))
plt.subplots_adjust(right=0.8)
axs_precision.set_title('Precision')
axs_precision.set_xlabel('Model')
axs_precision.set_ylabel('Precision')
# Create a figure for recall
fig_recall, axs_recall = plt.subplots(figsize=(12, 8))
plt.subplots_adjust(right=0.8)
axs_recall.set_title('Recall')
axs_recall.set_xlabel('Model')
axs_recall.set_ylabel('Recall')
# Create a figure for F1-score
fig_f1, axs_f1 = plt.subplots(figsize=(12, 8))
plt.subplots_adjust(right=0.8)
axs_f1.set_title('F1-score')
axs_f1.set_xlabel('Model')
axs_f1.set_ylabel('F1-score')
# Create empty arrays for precision, recall, and f1-score for each model
precision_scores = [[] for _ in range(len(classification_reports))]
recall_scores = [[] for _ in range(len(classification_reports))]
f1_scores = [[] for _ in range(len(classification_reports))]
# Extract precision, recall, and f1-score for each class and model
for i, (model_name, report_data) in enumerate(classification_reports.items()):
for class_name in class_names:
print(model_name) # This will print the model name
class_id = class_mapping[class_name]
precision_scores[i].append(report_data[str(class_id)]['precision'])
recall_scores[i].append(report_data[str(class_id)]['recall'])
f1_scores[i].append(report_data[str(class_id)]['f1-score'])
# Transpose the data
precision_scores = np.array(precision_scores).T
recall_scores = np.array(recall_scores).T
f1_scores = np.array(f1_scores).T
# Create x-axis values for models
x_models = np.arange(len(classification_reports))
# Reduce the bar width
bar_width = 0.05
# Create bar spacing
bar_spacing = 0.0
# Define custom colors for bars
colors = ['skyblue', 'lightcoral', 'lightgreen', 'lightsalmon', 'lightseagreen', 'lightpink']
# Plot precision, recall, and F1-score for each class as separate bars
for i, class_name in enumerate(class_names):
x_values = x_models + (i * (bar_width + bar_spacing))
axs_precision.bar(x_values, precision_scores[i], width=bar_width, label=class_name, color=colors[i % len(colors)])
axs_recall.bar(x_values, recall_scores[i], width=bar_width, label=class_name, color=colors[i % len(colors)])
axs_f1.bar(x_values, f1_scores[i], width=bar_width, label=class_name, color=colors[i % len(colors)])
model_names = [model_name for model_name, _ in classification_reports.items()]
# Set x-axis labels and positions
print(classification_reports)
axs_precision.set_xticks(x_models + ((bar_width + bar_spacing) * (len(classification_reports) - 1)) / 2)
axs_precision.set_xticklabels(model_names, rotation=0, ha='center')
axs_recall.set_xticks(x_models + ((bar_width + bar_spacing) * (len(classification_reports) - 1)) / 2)
axs_recall.set_xticklabels(model_names, rotation=0, ha='center')
axs_f1.set_xticks(x_models + ((bar_width + bar_spacing) * (len(classification_reports) - 1)) / 2)
axs_f1.set_xticklabels(model_names, rotation=0, ha='center')
# Set legend and adjust layout
axs_precision.legend(loc='upper left', bbox_to_anchor=(1, 0.8))
axs_recall.legend(loc='upper left', bbox_to_anchor=(1, 0.8))
axs_f1.legend(loc='upper left', bbox_to_anchor=(1, 0.8))
plt.tight_layout()
# Show the three figures
plt.show()