forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab-13-3-mnist_save_restore.py
185 lines (140 loc) · 5.68 KB
/
lab-13-3-mnist_save_restore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Lab 13 Saver and Restore
import tensorflow as tf
import random
# import matplotlib.pyplot as plt
import os
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
# parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
CHECK_POINT_DIR = TB_SUMMARY_DIR = './tb/mnist2'
# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
# Image input
x_image = tf.reshape(X, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 3)
# dropout (keep_prob) rate 0.7~0.5 on training, but should be 1 for testing
keep_prob = tf.placeholder(tf.float32)
# weights & bias for nn layers
# http://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
with tf.variable_scope('layer1'):
W1 = tf.get_variable("W", shape=[784, 512],
initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random_normal([512]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
L1 = tf.nn.dropout(L1, keep_prob=keep_prob)
tf.summary.histogram("X", X)
tf.summary.histogram("weights", W1)
tf.summary.histogram("bias", b1)
tf.summary.histogram("layer", L1)
with tf.variable_scope('layer2'):
W2 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b2 = tf.Variable(tf.random_normal([512]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
L2 = tf.nn.dropout(L2, keep_prob=keep_prob)
tf.summary.histogram("weights", W2)
tf.summary.histogram("bias", b2)
tf.summary.histogram("layer", L2)
with tf.variable_scope('layer3'):
W3 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b3 = tf.Variable(tf.random_normal([512]))
L3 = tf.nn.relu(tf.matmul(L2, W3) + b3)
L3 = tf.nn.dropout(L3, keep_prob=keep_prob)
tf.summary.histogram("weights", W3)
tf.summary.histogram("bias", b3)
tf.summary.histogram("layer", L3)
with tf.variable_scope('layer4'):
W4 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([512]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=keep_prob)
tf.summary.histogram("weights", W4)
tf.summary.histogram("bias", b4)
tf.summary.histogram("layer", L4)
with tf.variable_scope('layer5'):
W5 = tf.get_variable("W", shape=[512, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L4, W5) + b5
tf.summary.histogram("weights", W5)
tf.summary.histogram("bias", b5)
tf.summary.histogram("hypothesis", hypothesis)
# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
tf.summary.scalar("loss", cost)
last_epoch = tf.Variable(0, name='last_epoch')
# Summary
summary = tf.summary.merge_all()
# initialize
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Create summary writer
writer = tf.summary.FileWriter(TB_SUMMARY_DIR)
writer.add_graph(sess.graph)
global_step = 0
# Saver and Restore
saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state(CHECK_POINT_DIR)
if checkpoint and checkpoint.model_checkpoint_path:
try:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("Successfully loaded:", checkpoint.model_checkpoint_path)
except:
print("Error on loading old network weights")
else:
print("Could not find old network weights")
start_from = sess.run(last_epoch)
# train my model
print('Start learning from:', start_from)
for epoch in range(start_from, training_epochs):
print('Start Epoch:', epoch)
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.7}
s, _ = sess.run([summary, optimizer], feed_dict=feed_dict)
writer.add_summary(s, global_step=global_step)
global_step += 1
avg_cost += sess.run(cost, feed_dict=feed_dict) / total_batch
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print("Saving network...")
sess.run(last_epoch.assign(epoch + 1))
if not os.path.exists(CHECK_POINT_DIR):
os.makedirs(CHECK_POINT_DIR)
saver.save(sess, CHECK_POINT_DIR + "/model", global_step=i)
print('Learning Finished!')
# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1}))
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1], keep_prob: 1}))
# plt.imshow(mnist.test.images[r:r + 1].
# reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()
'''
...
Successfully loaded: ./tb/mnist/model-549
Start learning from: 2
Epoch: 2
...
tensorboard --logdir tb/
Starting TensorBoard b'41' on port 6006
(You can navigate to http://10.0.1.4:6006)
'''