forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
100_SIMS.py
70 lines (54 loc) · 2.24 KB
/
100_SIMS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Finding a Motif with Modifications
Rosalind ID: SIMS
Rosalind #: 100
URL: http://rosalind.info/problems/sims/
'''
from scripts import ReadFASTA
def fitting_alignment(v, w):
'''Returns the fitting alignment of strings v and w, along with the associated score.'''
# Initialize the matrices.
S = [[0 for j in xrange(len(w)+1)] for i in xrange(len(v)+1)]
backtrack = [[0 for j in xrange(len(w)+1)] for i in xrange(len(v)+1)]
# Fill in the Score and Backtrack matrices.
for i in xrange(1, len(v)+1):
for j in xrange(1, len(w)+1):
scores = [S[i-1][j] - 1, S[i][j-1] - 1, S[i-1][j-1] + [-1, 1][v[i-1] == w[j-1]]]
S[i][j] = max(scores)
backtrack[i][j] = scores.index(S[i][j])
# Get the position of the highest scoring cell corresponding to the end of the shorter word w.
j = len(w)
i = max(enumerate([S[row][j] for row in xrange(len(w), len(v))]),key=lambda x: x[1])[0] + len(w)
max_score = S[i][j]
# Initialize the aligned strings as the input strings up to the position of the high score.
v_aligned, w_aligned = v[:i], w[:j]
# Quick lambda function to insert indels.
insert_indel = lambda word, i: word[:i] + '-' + word[i:]
# Backtrack to start of the fitting alignment.
while i*j != 0:
if backtrack[i][j] == 0:
i -= 1
w_aligned = insert_indel(w_aligned, j)
elif backtrack[i][j] == 1:
j -= 1
v_aligned = insert_indel(v_aligned, i)
elif backtrack[i][j] == 2:
i -= 1
j -= 1
# Cut off v at the ending point of the backtrack.
v_aligned = v_aligned[i:]
return str(max_score), v_aligned, w_aligned
def main():
'''Main call. Reads, runs, and saves problem specific data.'''
# Read and parse the input data.
word1, word2 = [fasta[1] for fasta in ReadFASTA('data/rosalind_sims.txt')]
# Get the fitting alignment.
alignment = fitting_alignment(word1, word2)
# Print and save the answer.
print '\n'.join(alignment)
with open('output/100_SIMS.txt', 'w') as output_data:
output_data.write('\n'.join(alignment))
if __name__ == '__main__':
main()