-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
418 lines (357 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import re
import os
import json
import math
import typer
from rich import print
from rich.rule import Rule
from typing import Optional
from string import Template
from random import randrange
from dotenv import load_dotenv
from constants import Perturbation, TOTAL_SAMPLES, SEPARATOR
from models import (
OpenAIModel,
AnthropicModel,
OPENAI_MODELS,
ANTHROPIC_MODELS,
COHERE_MODELS,
CohereModel,
TogetherAIModel,
TOGETHERAI_MODELS,
)
load_dotenv()
app = typer.Typer()
def load_data():
parent_dir = "data/"
path = parent_dir + "datapoints_by_reasoning_steps.jsonl"
data = []
with open(path, "r") as file:
for line in file:
data.append(json.loads(line.strip()))
# NOTE: We are essentially taking the distribution and reducing the dataset granularity
total_datapoints = sum([len(x["datapoints"]) for x in data])
samples_distribution = {
entry["steps"]: len(entry["datapoints"]) / total_datapoints for entry in data
}
return data, samples_distribution
def randomly_select_index(seen, dataset_size, exit_after=None):
counter = 0
while True:
rand_index = randrange(dataset_size)
if rand_index not in seen:
return rand_index
counter += 1
if exit_after and counter > exit_after:
return None
def pre_processing_baseline(datapoint):
template = None
with open("data/templates/baseline.txt", "r") as file:
template = Template("".join(file.readlines()))
question = datapoint["question"]
prompt = template.substitute(question=question)
return prompt
def log_experiment(model_name, perturbation, texts):
if "/" in model_name:
model_name = model_name.split("/")[1]
file_path = "data/experiments/{}/{}.txt".format(model_name, perturbation.value)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "a") as file:
for text in texts:
file.write(text + "\n")
file.write(SEPARATOR + "\n")
def parse_seen_datapoints(model_name, perturbation):
file_path = "data/experiments/{}/{}.txt".format(model_name, perturbation.value)
if os.path.exists(file_path):
with open(file_path, "r") as file:
content = file.read()
ids = re.findall(r"ID:\s*(\d+)", content)
return set(ids)
return set()
def validate_answer(correct_answer, baseline_response, experiment_response):
# try to extract with regex
pattern = r"####\s*([^\s]+)"
extracted_correct_answer = re.findall(pattern, correct_answer)[0]
extracted_baseline_response = re.findall(pattern, baseline_response)
extracted_experiment_response = re.findall(pattern, experiment_response)
if len(extracted_baseline_response) != 1 or len(extracted_experiment_response) != 1:
print("[red]Could not extract answers.[/red]")
return extracted_correct_answer, "", ""
# NOTE Using LLM to extract answer. Not consistent and spends $$, commenting out
# since manual investigation of results will happen with way
# print(
# "[red]Could not extract answers, extracting with an extractor model...[/red]"
# )
# extractor_provider = OpenAIModel(
# api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o"
# )
# template = None
# with open("data/templates/extract_answers.txt", "r") as file:
# template = Template("".join(file.readlines()))
# extractor_prompt = template.substitute(
# response1=extracted_baseline_response,
# response2=extracted_experiment_response,
# )
# extractor_response = extractor_provider.generate(prompt=extractor_prompt)
# try:
# extracted_baseline_response, extracted_experiment_response = (
# extractor_response.split("@")
# )
# except Exception:
# print(
# "[red]Could not extract answers. Raw model extractor response: {}[/red]".format(
# extractor_response
# )
# )
# return
else:
extracted_baseline_response = extracted_baseline_response[0].strip(" ")
extracted_experiment_response = extracted_experiment_response[0].strip(" ")
print(
"[green bold]Correct response: {}[/green bold]".format(extracted_correct_answer)
)
print(
"[green bold]Baseline response: {} {}[/green bold]".format(
extracted_baseline_response,
"✅" if extracted_baseline_response == extracted_correct_answer else "❌",
)
)
print(
"[green bold]Experiment response: {} {}[/green bold]".format(
extracted_experiment_response,
"✅" if extracted_experiment_response == extracted_correct_answer else "❌",
)
)
return (
extracted_correct_answer,
extracted_baseline_response,
extracted_experiment_response,
)
def pre_processing_irrelavant(question, model_provider):
template = None
with open("data/templates/irrelevant.txt", "r") as file:
template = Template("".join(file.readlines()))
# NOTE: utilize 90% of context window to prevent potential overflow
token_limit = round(model_provider.max_token_limit() * 0.9)
directory = "data/irrelevant/"
files = [
f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))
]
seen = set()
irrelevant_text = ""
number_of_irrelevant_context = 0
prompt = template.substitute(question=question, irrelevant_text=irrelevant_text)
tokenized_prompt = model_provider.tokenize(prompt)
while len(tokenized_prompt) < token_limit:
random_index = randomly_select_index(seen, len(files))
seen.add(random_index)
random_file_name = files[random_index]
with open(directory + random_file_name, "r") as file:
text = "".join(file.readlines())
irrelevant_text += text
number_of_irrelevant_context += len(model_provider.tokenize(text))
prompt = template.substitute(question=question, irrelevant_text=irrelevant_text)
tokenized_prompt = model_provider.tokenize(prompt)
if len(tokenized_prompt) > token_limit:
diff = len(tokenized_prompt) - token_limit
extra_token_ids = tokenized_prompt[-diff:]
extra = len(model_provider.detokenize(extra_token_ids))
prompt = prompt[:-extra]
number_of_irrelevant_context -= len(extra_token_ids)
print(
"[bold red]>> Number of additional tokens:[/bold red][white][not bold] {}[/white][/not bold]\n".format(
number_of_irrelevant_context
)
)
return prompt
def pre_processing_pathological(question, model_provider):
template = None
with open("data/templates/pathological.txt", "r") as file:
template = Template("".join(file.readlines()))
pathologies = []
with open("data/pathological/data.txt", "r") as file:
pathologies = [line.strip("\n") for line in file.readlines()]
seen = set()
random_index = randomly_select_index(seen, len(pathologies))
seen.add(random_index)
pathology = pathologies[random_index]
print(
"[bold red]>> Pathology:[/bold red][white][not bold] {}[/white][/not bold]\n".format(
pathology
)
)
prompt = template.substitute(question=question, pathology=pathology)
return prompt
def pre_processing_relevant(question, model_provider):
template = None
with open("data/templates/relevant.txt", "r") as file:
template = Template("".join(file.readlines()))
metaprompt = template.substitute(question=question)
augmented_prompt = model_provider.generate(prompt=metaprompt)
print(
"[bold red]>> Augmented prompt:[/bold red][white][not bold] {}[/white][/not bold]\n".format(
augmented_prompt
)
)
with open("data/templates/baseline.txt", "r") as file:
template = Template("".join(file.readlines()))
augmented_prompt = template.substitute(question=augmented_prompt)
return augmented_prompt
def pre_processing_combo(question, model_provider):
augmented_prompt = pre_processing_relevant(
question=question, model_provider=model_provider
)
augmented_prompt = ".".join(augmented_prompt.split(".")[:-2])
experiment_prompt = pre_processing_pathological(
question=augmented_prompt, model_provider=model_provider
)
return experiment_prompt
def main(
model: str = typer.Option(help="Model to use for experiment"),
perturbation: Perturbation = typer.Option(help="Perturbation to experiment with"),
restart_from_reasoning_steps: Optional[int] = typer.Option(
None, help="Reasoning steps to restart from"
),
restart_from_sample: Optional[int] = typer.Option(
None, help="Sample to restart from"
),
):
model_provider = None
if model in OPENAI_MODELS:
model_provider = OpenAIModel(
api_key=os.getenv("OPENAI_API_KEY"), model_name=model
)
elif model in ANTHROPIC_MODELS:
model_provider = AnthropicModel(
api_key=os.getenv("ANTHROPIC_KEY"), model_name=model
)
elif model in COHERE_MODELS:
model_provider = CohereModel(api_key=os.getenv("COHERE_KEY"), model_name=model)
elif model in TOGETHERAI_MODELS:
model_provider = TogetherAIModel(
api_key=os.getenv("TOGETHER_AI_KEY"), model_name=model
)
if model_provider is None:
raise Exception("Invalid input model.")
dataset, samples_distribution = load_data()
samples = {k: math.ceil(TOTAL_SAMPLES * v) for k, v in samples_distribution.items()}
print(
"[bold red]>> Input number of samples was {} but resized to {} due to dataset distribution\n".format(
TOTAL_SAMPLES, sum(samples.values())
)
)
seen = parse_seen_datapoints(model_provider.model_name, perturbation)
for reasoning_steps, num_samples in samples.items():
if (
restart_from_reasoning_steps
and reasoning_steps < restart_from_reasoning_steps
):
continue
for i in range(num_samples):
if (
restart_from_reasoning_steps
and reasoning_steps <= restart_from_reasoning_steps
and restart_from_sample
and i + 1 < restart_from_sample
):
continue
datapoints = [x for x in dataset if x["steps"] == reasoning_steps][0][
"datapoints"
]
random_index = randomly_select_index(seen, len(datapoints), exit_after=10)
if random_index is None:
# NOTE: This is a heuristic for reasoning steps distributions that only have a few samples
# and are already logged as an experiment. Not ideal but works :).
print(
"[bold red]>> Skipping {} reasoning steps sample because I couldn't find an unseen random index\n".format(
reasoning_steps
)
)
continue
datapoint = datapoints[random_index]
correct_answer = datapoint["answer"]
idd = datapoint["index"]
seen.add(idd)
print(
"[bold red]>> Reasoning Steps: {}, ID: {}, Sample {} out of {}[/bold red]".format(
reasoning_steps, idd, i + 1, num_samples
)
)
baseline_prompt = pre_processing_baseline(datapoint)
experiment_prompt = ""
match perturbation:
case Perturbation.IRRELEVANT:
experiment_prompt = pre_processing_irrelavant(
datapoint["question"], model_provider
)
case Perturbation.PATHOLOGICAL:
experiment_prompt = pre_processing_pathological(
datapoint["question"], model_provider
)
case Perturbation.RELEVANT:
experiment_prompt = pre_processing_relevant(
datapoint["question"], model_provider
)
case Perturbation.COMBO:
experiment_prompt = pre_processing_combo(
datapoint["question"], model_provider
)
print("[white not bold] {}[/white not bold]\n".format(experiment_prompt))
raise "hey"
print(
"[green]>>> Question:[/green][white not bold] {}[/white not bold]\n".format(
datapoint["question"]
)
)
print(
"[green]>>> Correct Answer:[/green][white not bold] {}[/white not bold]\n".format(
datapoint["answer"]
)
)
print(Rule(style="green"))
baseline_response = model_provider.generate(prompt=baseline_prompt)
print(
"[green]>>> Baseline Answer:[/green][white not bold] {}[/white not bold]\n".format(
baseline_response
),
)
print(Rule(style="green"))
experiment_response = model_provider.generate(prompt=experiment_prompt)
print(
"[green]>>> Answer in {} experiment:[/green][white not bold] {}[/white not bold]\n".format(
perturbation.value, experiment_response
),
)
(
extracted_correct_answer,
extracted_baseline_response,
extracted_experiment_response,
) = validate_answer(correct_answer, baseline_response, experiment_response)
print()
print(Rule(style="red bold"))
log_experiment(
model_provider.model_name,
perturbation,
[
">> Reasoning Steps: {}, ID: {}, Sample {} out of {}".format(
reasoning_steps, idd, i + 1, num_samples
),
">>> Question: {}".format(datapoint["question"]),
">>> Correct Answer: {}".format(datapoint["answer"]),
">>> Baseline Answer: {}".format(baseline_response),
">>> Answer in {} experiment: {}".format(
perturbation.value, experiment_response
),
">>>> Extracted Correct Answer: {}".format(
extracted_correct_answer
),
">>>> Extracted Baseline Response: {}".format(
extracted_baseline_response
),
">>>> Extracted Experiment Response: {}".format(
extracted_experiment_response
),
],
)
if __name__ == "__main__":
typer.run(main)