forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 1
/
delay.h
159 lines (136 loc) · 5.05 KB
/
delay.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#ifndef __INC_DELAY_H
#define __INC_DELAY_H
// Class to ensure that a minimum amount of time has kicked since the last time run - and delay if not enough time has passed yet
// this should make sure that chipsets that have
template<int WAIT> class CMinWait {
uint16_t mLastMicros;
public:
CMinWait() { mLastMicros = 0; }
void wait() {
uint16_t diff;
do {
diff = (micros() & 0xFFFF) - mLastMicros;
} while(diff < WAIT);
}
void mark() { mLastMicros = micros() & 0xFFFF; }
};
////////////////////////////////////////////////////////////////////////////////////////////
//
// Clock cycle counted delay loop
//
////////////////////////////////////////////////////////////////////////////////////////////
#if defined(__arm__)
# define NOP __asm__ __volatile__ ("nop\n");
# define NOP2 __asm__ __volatile__ ("nop\n\tnop");
#else
# define NOP __asm__ __volatile__ ("cp r0,r0\n");
# define NOP2 __asm__ __volatile__ ("rjmp .+0");
#endif
// predeclaration to not upset the compiler
template<int CYCLES> inline void delaycycles();
// TODO: ARM version of _delaycycles_
// usable definition
#if defined(FASTLED_AVR)
// worker template - this will nop for LOOP * 3 + PAD cycles total
template<int LOOP, int PAD> inline void _delaycycles_AVR() {
delaycycles<PAD>();
// the loop below is 3 cycles * LOOP. the LDI is one cycle,
// the DEC is 1 cycle, the BRNE is 2 cycles if looping back and
// 1 if not (the LDI balances out the BRNE being 1 cycle on exit)
__asm__ __volatile__ (
" LDI R16, %0\n"
"L_%=: DEC R16\n"
" BRNE L_%=\n"
: /* no outputs */
: "M" (LOOP)
: "r16"
);
}
template<int CYCLES> __attribute__((always_inline)) inline void delaycycles() {
_delaycycles_AVR<CYCLES / 3, CYCLES % 3>();
}
#else
// template<int LOOP, int PAD> inline void _delaycycles_ARM() {
// delaycycles<PAD>();
// // the loop below is 3 cycles * LOOP. the LDI is one cycle,
// // the DEC is 1 cycle, the BRNE is 2 cycles if looping back and
// // 1 if not (the LDI balances out the BRNE being 1 cycle on exit)
// __asm__ __volatile__ (
// " mov.w r9, %0\n"
// "L_%=: subs.w r9, r9, #1\n"
// " bne.n L_%=\n"
// : /* no outputs */
// : "M" (LOOP)
// : "r9"
// );
// }
template<int CYCLES> __attribute__((always_inline)) inline void delaycycles() {
// _delaycycles_ARM<CYCLES / 3, CYCLES % 3>();
NOP; delaycycles<CYCLES-1>();
}
#endif
// pre-instantiations for values small enough to not need the loop, as well as sanity holders
// for some negative values.
template<> __attribute__((always_inline)) inline void delaycycles<-6>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-5>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-4>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-3>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-2>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-1>() {}
template<> __attribute__((always_inline)) inline void delaycycles<0>() {}
template<> __attribute__((always_inline)) inline void delaycycles<1>() {NOP;}
template<> __attribute__((always_inline)) inline void delaycycles<2>() {NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<3>() {NOP;NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<4>() {NOP2;NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<5>() {NOP2;NOP2;NOP;}
// Some timing related macros/definitions
// Macro to convert from nano-seconds to clocks and clocks to nano-seconds
// #define NS(_NS) (_NS / (1000 / (F_CPU / 1000000L)))
#if 1 || (F_CPU < 96000000)
#define NS(_NS) ( (_NS * (F_CPU / 1000000L))) / 1000
#define CLKS_TO_MICROS(_CLKS) ((long)(_CLKS)) / (F_CPU / 1000000L)
#else
#define NS(_NS) ( (_NS * (F_CPU / 2000000L))) / 1000
#define CLKS_TO_MICROS(_CLKS) ((long)(_CLKS)) / (F_CPU / 2000000L)
#endif
// Macro for making sure there's enough time available
#define NO_TIME(A, B, C) (NS(A) < 3 || NS(B) < 3 || NS(C) < 6)
#if defined(FASTLED_TEENSY3)
extern volatile uint32_t systick_millis_count;
# define MS_COUNTER systick_millis_count
#elif defined(__SAM3X8E__)
extern volatile uint32_t fuckit;
# define MS_COUNTER fuckit
#else
# if defined(CORE_TEENSY)
extern volatile unsigned long timer0_millis_count;
# define MS_COUNTER timer0_millis_count
# else
extern volatile unsigned long timer0_millis;
# define MS_COUNTER timer0_millis
# endif
#endif
#ifdef __SAM3X8E__
class SysClockSaver {
SysTick_Type m_Saved;
public:
SysClockSaver(int newTimeValue) { save(newTimeValue); }
void save(int newTimeValue) {
m_Saved.CTRL = SysTick->CTRL;
SysTick->CTRL &= ~(SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk);
m_Saved.LOAD = SysTick->LOAD;
m_Saved.VAL = SysTick->VAL;
SysTick->VAL = 0;
SysTick->LOAD = newTimeValue;
SysTick->CTRL |= SysTick_CTRL_CLKSOURCE_Msk;
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
}
void restore() {
SysTick->CTRL &= ~(SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk);
SysTick->LOAD = m_Saved.LOAD;
SysTick->VAL = m_Saved.VAL;
SysTick->CTRL = m_Saved.CTRL;
}
};
#endif
#endif