-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcleaned_up.py
252 lines (194 loc) · 8.13 KB
/
cleaned_up.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# pip install scipy, pyglet, matplotlib, trimesh
import numpy as np
from math import *
from scipy.sparse import *
import trimesh
from scipy.sparse.linalg import eigsh, inv
from scipy.special import jn_zeros
from matplotlib.pyplot import plot
import matplotlib.cm as cm
import mayavi.mlab as mlab
from matplotlib import pyplot as plt
def tri_indices(simplices):
return ([triplet[c] for triplet in simplices] for c in range(3))
def row_norms(mtx):
return np.sum(np.abs(mtx)**2,axis=-1)**.5
def barycentric_areas(X,T): # I'll go ahead and do part (d) here
vv = []
nv = X.shape[0]
I = T[:,0]; J = T[:,1]; K = T[:,2];
vv.append( X[I,:] ); vv.append( X[J,:] ); vv.append( X[K,:] )
# Triangle areas
nn = np.cross(vv[1]-vv[0],vv[2]-vv[0])
triangleAreas = .5*row_norms(nn)
# Angle deficits (integrated curvature) and barycentric areas
barycentricAreas = np.zeros(nv)
for i in range(0, 3):
barycentricAreas = barycentricAreas + np.bincount(T[:,i],triangleAreas/3,nv) #added for flat states
return barycentricAreas
def mass_matrix(X,T): # lumped diagonal mass matrix
nv = X.shape[0]
return spdiags(barycentric_areas(X,T),0,nv,nv)
def cot_laplacian(X,T): # the famous cotangent Laplacian matrix; convention here is it's positive semidefinite
nv = X.shape[0]
nt = T.shape[0]
vv = []
I = T[:,0]; J = T[:,1]; K = T[:,2];
vv.append( X[I,:] ); vv.append( X[J,:] ); vv.append( X[K,:] )
# Triangle areas
nn = np.cross(vv[1]-vv[0],vv[2]-vv[0])
triangleAreas = .5*row_norms(nn)
# Angle deficits (integrated curvature) and barycentric areas
innerCotangents = np.zeros((nt,3))
for i in range(0, 3):
e1 = vv[(i+1)%3]-vv[i]
e2 = vv[(i+2)%3]-vv[i]
innerCotangents[:,i] = np.sum(np.multiply(e1,e2),axis=-1)/(2*triangleAreas) # dot product over cross product
L = (csr_matrix((innerCotangents[:,2],(I,J)),shape=(nv,nv)) +
csr_matrix((innerCotangents[:,0],(J,K)),shape=(nv,nv)) +
csr_matrix((innerCotangents[:,1],(K,I)),shape=(nv,nv))
)
L = L+L.transpose()
rowSums = np.sum(L,axis=-1).transpose()
L = L - spdiags(rowSums,0,nv,nv)
return -.5*L
def laplacian_spectrum(X,T,k,boundary='neumann'):
L = cot_laplacian(X,T)
M = mass_matrix(X,T)
area = np.sum(M)
M = M / area * pi
if boundary=='neumann': # natural boundary conditions, ignore boundary
vals,vecs = eigsh(csc_matrix(L),k=k,M=csc_matrix(M),sigma=-1)#which='SM') #needed to converge on flat states
if boundary=='dirichlet': # zero out the boundary
boundary_verts,interior_verts = boundary_vertices(T)
L0 = L[interior_verts,:][:,interior_verts] # is there a faster way to get a submatrix?
M0 = M.tocsr()[interior_verts,:][:,interior_verts]
vals,vecs0 = eigsh(csc_matrix(L0),k=k,M=csc_matrix(M0),sigma=-1)#which='SM')#needed to converge on flat states
vecs = np.zeros((X.shape[0],k))
vecs[interior_verts,:] = vecs0
return vals,vecs
def boundary_vertices(T): # some magic to find a list of boundary vertices, probably slow
E1 = np.column_stack((T[:,0],T[:,1]))
E2 = np.column_stack((T[:,1],T[:,2]))
E3 = np.column_stack((T[:,2],T[:,0]))
E = np.row_stack((E1,E2,E3))
E.sort(axis=1)
ne = E.shape[0]
o = np.ones(ne)
adj = csr_matrix((o,(E[:,0],E[:,1])))
bdrypart = (adj==1) #edges repeated 2x are in the interior
idx=find(bdrypart)
idx1=idx[0]
idx2=idx[1]
boundary_verts = np.unique(np.row_stack((idx1,idx2)))
all_verts = range(0,T.max()+1)
interior_verts = list(set(all_verts)-set(boundary_verts))
return boundary_verts,interior_verts
def heat_kernel(x, evals):
return [sum([np.exp(-t*l) for l in evals]) for t in x]
def heat_kernel_taylor(x, L):
L2 = L*L
L3 = L2*L
L4 = L3*L
L5 = L4*L
estimate = [(identity(L.shape[0], format='csr') - t*L + t**2*L2/2 - \
(t**3)*L3/6 + (t**4)*L4/24 - (t**5)*L5/120) for t in x]
return [np.trace(i.A) for i in estimate]
def small_heat_kernel(x, p, a):
return [a/(2*pi*t) - p/(4*sqrt(pi*t)) for t in x]
def find_area(X,T):
return np.sum(mass_matrix(X,T))
def find_perimeter(X,T):
E1 = np.column_stack((T[:,0],T[:,1]))
E2 = np.column_stack((T[:,1],T[:,2]))
E3 = np.column_stack((T[:,2],T[:,0]))
E = np.row_stack((E1,E2,E3))
E.sort(axis=1)
ne = E.shape[0]
o = np.ones(ne)
adj = csr_matrix((o,(E[:,0],E[:,1])))
bdrypart = (adj==1) #edges repeated 2x are in the interior
first_vertex, second_vertex, potatoe = find(bdrypart)
perimeter = 0
for i in range(len(first_vertex)):
perimeter += sqrt((X[first_vertex[i]][0] - X[second_vertex[i]][0])**2 \
+ (X[first_vertex[i]][1] - X[second_vertex[i]][1])**2)
return perimeter
def big_t(files, circle, x, k):
#loading circle stuffs
mesh = trimesh.load(circle)
X = mesh.vertices; # each row is the position of a vertex
I,J,K=tri_indices(mesh.faces)
T = np.column_stack((I,J,K)) # rows are (i,j,k) indices of triangle vertices
nv = X.shape[0] # number of vertices
nt = T.shape[0] #number of triangles
circle_vals,circle_vecs = laplacian_spectrum(X,T,k,'dirichlet')
big_t_values = []
big_t_values.append(heat_kernel(x,circle_vals))
#for historical value
y = [[0]*100, [0]*100]
for file in files:
mesh = trimesh.load(file)
X = mesh.vertices; # each row is the position of a vertex
I,J,K=tri_indices(mesh.faces)
T = np.column_stack((I,J,K)) # rows are (i,j,k) indices of triangle vertices
nv = X.shape[0] # number of vertices
nt = T.shape[0] #number of triangles
vals,vecs = laplacian_spectrum(X,T,k,'dirichlet')
big_t_values.append(heat_kernel(x, vals))
return big_t_values
def small_t(files, circle, x):
mesh = trimesh.load(circle)
X = mesh.vertices; # each row is the position of a vertex
I,J,K=tri_indices(mesh.faces)
T = np.column_stack((I,J,K)) # rows are (i,j,k) indices of triangle vertices
perimeter = find_perimeter(X,T)/sqrt(find_area(X,T)/pi)
print('circle', perimeter)
small_t_values = []
small_t_values.append(small_heat_kernel(x,perimeter,pi))
for file in files:
mesh = trimesh.load(file)
X = mesh.vertices;
I,J,K = tri_indices(mesh.faces)
T = np.column_stack((I,J,K))
perimeter = find_perimeter(X,T)/sqrt(find_area(X,T)/pi)
small_t_values.append(small_heat_kernel(x,perimeter,pi))
print(file, perimeter)
return small_t_values
def interpolate_t(files, circle, k):
# k is number of eigenvalues to find
x = np.linspace(0,.5, 200).tolist()
x = x[1:]
#weights = np.linspace(0,1,200).tolist() + [1]*200
weights = [np.exp(-50*t) for t in x]
#weights = [0]*200
#x = np.linspace(0.001,0.05, 200)
#x = x[1:]
big_t_values = big_t(files, circle, x, k)
small_t_values = small_t(files, circle, x)
# interpolate and plot
interp = [[(weights[j])*max(small_t_values[i][j],0) + (1-weights[j])*big_t_values[i][j] for j in range(len(x))] for i in range(len(files)+1)]
log_interp = [[np.log(j) for j in i] for i in interp]
names = [f[:-4] for f in files]
names.insert(0, 'circle')
new_interp = [[(interp[0][j] - interp[i][j]) for j in range(len(x))] for i in range(len(files)+1)]
plt.xscale('log')
plt.yscale('log')
for i in range(len(files)+1):
plt.plot(x, new_interp[i])
plt.legend(names)
plt.show()
# log_big_t = [[np.log(j) for j in i] for i in big_t_values]
# log_small_t = [[np.log(j) for j in i] for i in small_t_values]
# difference = [[(log_big_t[i][j] - log_small_t[i][j])\
# for j in range(len(x))] for i in range(len(log_big_t))]
# for i in range(len(files) + 1):
# plt.plot(x, difference[i])
# plt.legend(names)
# plt.show()
# MAIN
# draw
# s1=mlab.triangular_mesh(X[:,0],X[:,1],X[:,2], T, scalars=vecs[:,0])
# mlab.colorbar()
# mlab.title('Dirichlet base eigenfunction')
# mlab.show()