-
Notifications
You must be signed in to change notification settings - Fork 20
/
mgm.cc
450 lines (377 loc) · 17.8 KB
/
mgm.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/* Copyright (C) 2015, Gabriele Facciolo <facciolo@cmla.ens-cachan.fr>,
* Carlo de Franchis <carlo.de-franchis@ens-cachan.fr>,
* Enric Meinhardt <enric.meinhardt@cmla.ens-cachan.fr>*/
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "math.h"
#include <numeric>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cmath>
#include "assert.h"
#include "smartparameter.h"
//// a structure to wrap images
#include "img.h"
#include "point.h"
#include "img_tools.h"
// // not used here but generally useful
// typedef std::vector<float> FloatVector;
SMART_PARAMETER(TSGM_DEBUG,0)
/********************** COSTVOLUME *****************************/
#include "mgm_costvolume.h"
struct costvolume_t allocate_and_fill_sgm_costvolume (struct Img &in_u, // source (reference) image
struct Img &in_v, // destination (match) image
struct Img &dminI,// per pixel max&min disparity
struct Img &dmaxI,
char* prefilter, // none, sobel, census(WxW)
char* distance, // census, l1, l2, ncc(WxW), btl1, btl2
float truncDist); // truncated differences
/********************** MGM *****************************/
#include "mgm_core.cc"
struct costvolume_t mgm(struct costvolume_t CC, const struct Img &in_w,
const struct Img &dminI, const struct Img &dmaxI,
struct Img *out, struct Img *outcost,
const float P1, const float P2, const int NDIR, const int MGM,
const int USE_FELZENSZWALB_POTENTIALS, // USE SGM(0) or FELZENSZWALB(1) POTENTIALS
int SGM_FIX_OVERCOUNT); // fix the overcounting in SGM following (Drory etal. 2014)
#include "mgm_weights.h"
struct Img compute_mgm_weights(struct Img &u, float aP, float aThresh);
/********** SOLUTION REFINEMENT AND ENERGY COMPUTATION ***********/
#include "mgm_refine.h"
void subpixel_refinement_sgm(struct costvolume_t &S, // modifies out and outcost
std::vector<float > &out,
std::vector<float > &outcost,
char *refinement); //none, vfit, parabola, cubic, parabolaOCV
#include "mgm_print_energy.h"
void print_solution_energy(const struct Img &in_u, std::vector<float > &disp,
struct costvolume_t &CC, float P1, float P2);
/********************** OTHERSTUFF *****************************/
void leftright_test(struct Img &dx, struct Img &Rdx, float threshold=1)
{
int nc = dx.ncol;
int nr = dx.nrow;
int Rnc = Rdx.ncol;
int Rnr = Rdx.nrow;
for(int y=0;y<nr;y++)
for(int x=0;x<nc;x++) {
int i=x+y*nc;
int Lx,Rx;
Lx = round(x+ dx[i]);
if( (Lx)<Rnc && (Lx)>=0 ){
int Lidx = Lx + y*Rnc;
float Rx = Lx + Rdx[Lidx];
if ( fabs(Rx-x) > threshold) {
dx[i] = NAN;
}
}else {
dx[i] = NAN;
}
}
}
void leftright_test_bleyer(struct Img &dx, struct Img &Rdx)
// warps the pixels of the right image to the left, if no pixel in the
// left image receives a contribution then it is marked as occluded
{
int nc = dx.ncol;
int nr = dx.nrow;
int Rnc = Rdx.ncol;
int Rnr = Rdx.nrow;
struct Img occL(nc,nr);
for(int i=0;i<nr*nc;i++) occL[i]=0;
for(int y=0;y<Rnr;y++)
for(int x=0;x<Rnc;x++) {
int i=x+y*Rnc;
int Lx = round(x+ Rdx[i]);
if( (Lx)<nc && (Lx)>=0 ){
occL[Lx + y*nc] = 255;
}
}
for(int i=0;i<nr*nc;i++)
if(occL[i]==0) dx[i] = NAN;
}
std::pair<float, float> update_dmin_dmax(struct Img outoff, struct Img *dminI, struct Img *dmaxI, int slack=3, int radius=2) {
struct Img dminI2(*dminI);
struct Img dmaxI2(*dmaxI);
int nx = outoff.nx;
int ny = outoff.ny;
// global (finite) min and max
std::pair<float,float>gminmax = image_minmax(outoff);
float gmin = gminmax.first; float gmax = gminmax.second;
if (slack<0) slack = -slack;
int r=radius;
for (int j=0;j<ny;j++)
for (int i=0;i<nx;i++)
{
float dmin = INFINITY; float dmax = -INFINITY;
for (int dj=-r;dj<=r;dj++)
for (int di=-r;di<=r;di++)
{
float v = valneumann(outoff, i+di, j+dj);
if (std::isfinite(v)) {
dmin = fmin( dmin, v - slack );
dmax = fmax( dmax, v + slack );
} else {
dmin = fmin( dmin, gmin - slack );
dmax = fmax( dmax, gmax + slack );
}
}
if (std::isfinite(dmin)) {
dminI2[i+j*nx] = dmin; dmaxI2[i+j*nx] = dmax;
}
}
*dminI = dminI2;
*dmaxI = dmaxI2;
return std::pair<float, float> (gmin, gmax);
}
// c: pointer to original argc
// v: pointer to original argv
// o: option name after hyphen
// d: default value (if NULL, the option takes no argument)
static char *pick_option(int *c, char ***v, char *o, char *d)
{
int argc = *c;
char **argv = *v;
int id = d ? 1 : 0;
for (int i = 0; i < argc - id; i++)
if (argv[i][0] == '-' && 0 == strcmp(argv[i] + 1, o)) {
char *r = argv[i + id] + 1 - id;
*c -= id + 1;
for (int j = i; j < argc - id; j++)
(*v)[j] = (*v)[j + id + 1];
return r;
}
return d;
}
/*MGM*/
SMART_PARAMETER(TSGM,4);
SMART_PARAMETER(TSGM_FIX_OVERCOUNT,1);
SMART_PARAMETER(TSGM_2LMIN,0);
SMART_PARAMETER(USE_TRUNCATED_LINEAR_POTENTIALS,0);
SMART_PARAMETER(WITH_MGM2,0);
SMART_PARAMETER(TSGM_ITER,1)
SMART_PARAMETER(TESTLRRL,1)
SMART_PARAMETER(TESTLRRL_TAU,1.0)
SMART_PARAMETER(MEDIAN,0)
const char *help_version = "mgm 2.0";
const char *help_name = "mgm";
const char *help_descr = "Compute stereo disparities by the MGM algorithm.";
const char *help_usage = "usage:\n\tmgm [-options] u v out [cost [backflow]]";
const char *help_long =
"Mgm computes a disparity map between two rectified images.\n"
"The algorithm is described in the article\n"
"\n"
" \"MGM: A Significantly More Global Matching for Stereovision\".\n"
" G. Facciolo and C. de Franchis and E. Meinhardt\n"
" British Machine Vision Conference 2015\n"
"\n"
"All the parameters in the paper are accessible by options of this program.\n"
"See http://dev.ipol.im/~facciolo/mgm/ for more details.\n"
"\n"
"Usage: mgm [options] in_u in_v out_disp\n"
" or: mgm [options] in_u in_v out_disp out_cost\n"
" or: mgm [options] in_u in_v out_disp out_cost out_backflow\n"
"\n"
"Options:\n"
" -h Display short help message.\n"
" --help Display longer help message.\n"
" --version Print version of mgm.\n"
" -r {-30} Minimum horizontal disparity value.\n"
" -R {30} Maximum horizontal disparity value.\n"
" -O {4} Number of search directions. Options: 2, 4, 8, 16. \n"
" -P1 {8} SGM regularization parameter P1.\n"
" -P2 {32} SGM regularization parameter P2.\n"
" -p {none} Prefilter algorithm: none, census, sobelx, gblur.\n"
" The ``census`` mode uses a window of size CENSUS_NCC_WIN.\n"
" -t {ad} Distance function: census, ad, sd, ncc, btad, btsd.\n"
" For ``ncc`` the window is of size CENSUS_NCC_WIN.\n"
" The ``bt`` option is the Birchfield-Tomasi distance.\n"
" -truncDist {inf} Truncate distances at nch * truncDist.\n"
" -s {none} Subpixel refinement method: none, vfit, parabola, cubic.\n"
" -aP1 {1} Multiplier of P1 when sum |I1 - I2|^2 < nch * aThresh^2.\n"
" -aP2 {1}: Multiplier of P2 as above.\n"
" -aThresh {5} Threshold for the multiplier factors.\n"
" -m FILE {none} A file with minimum input disparity per pixel.\n"
" -M FILE {none} A file with maximum input disparity per pixel.\n"
" -l FILE {none} Write here the disparity before the left-to-right test.\n"
"\n"
"Environment:\n"
"\n"
" CENSUS_NCC_WIN=3 Size of the window for the census prefilter and NCC.\n"
" TESTLRRL=1 If 1, do left-to-right and r-to-l consistency checks.\n"
" MEDIAN=0: Radius of the median filter postprocessing.\n"
" TSGM=4 Regularity level.\n"
" TSGM_ITER=1 Number of iterations.\n"
" TSGM_FIX_OVERCOUNT=1 If 1, fix overcounting of the data term in the energy.\n"
" TSGM_DEBUG=0 If 1, print debug information.\n"
" TSGM_2LMIN=0 Use the improved TSGM cost only for TSGM=2. Overrides the TSGM value.\n"
" USE_TRUNCATED_LINEAR_POTENTIALS=0 If 1, use the Felzenszwalb-Huttenlocher\n"
" truncated linear potential. Then P1 and\n"
" P2 change meaning. The potential\n"
" becomes V(p,q) = min(P2, P1*|p-q|)."
"\n"
"Examples:\n"
" mgm u.tif v.tif disp_uv.tif compute disparities between u and v\n"
" mgm u.tif v.tif disp_uv.tif cost.tif ...and save the matching costs\n"
" MEDIAN=1 mgm ... ...enable median filter preprocessing\n"
" TESTLRRL=0 mgm ... ...disable output consistency checks\n"
" mgm u.tif v.tif disp.tif -l d0.tif ...save pre-filtered disparities\n"
"\n"
"Report bugs to <gabriele.facciolo@ens-paris-saclay.fr>."
;
int main(int argc, char* argv[])
{
// print help if needed
if (argc<2 || !strcmp(argv[1], "-h")) return 0*puts(help_usage);
if (!strcmp(argv[1], "-?" )) return 0*puts(help_descr);
if (!strcmp(argv[1], "--help" )) return 0*puts(help_long);
if (!strcmp(argv[1], "--version" )) return 0*puts(help_version);
if (argc<4)
{
fprintf (stderr, "too few parameters\n");
fprintf (stderr, " usage: %s [-r dmin -R dmax] [-m dminImg -M dmaxImg] [-O NDIR: 2, (4), 8, 16] u v out [cost [backflow]]\n",argv[0]);
fprintf (stderr, " [-P1 (8) -P2 (32)]: sgm regularization parameters P1 and P2\n");
fprintf (stderr, " [-p PREFILT(none)]: prefilter = {none|census|sobelx|gblur} (census is WxW)\n");
fprintf (stderr, " [-t DIST(ad)]: distance = {census|ad|sd|ncc|btad|btsd} (ncc is WxW, bt is Birchfield&Tomasi)\n");
fprintf (stderr, " [-truncDist (inf)]: truncate distances at nch*truncDist (default INFINITY)\n");
fprintf (stderr, " [-s SUBPIX(none)]: subpixel refinement = {none|vfit|parabola|cubic}\n");
fprintf (stderr, " [-aP1 (1)]: multiplier factors of P1 and P2 when\n");
fprintf (stderr, " [-aP2 (1)]: \\sum |I1 - I2|^2 < nch*aThresh^2\n");
fprintf (stderr, " [-aThresh (5)]: Threshold for the multiplier factor (default 5)\n");
fprintf (stderr, " [-l FILE (none)]: write disparity without LR test (default none)\n");
fprintf (stderr, " ENV: CENSUS_NCC_WIN=3 : size of the window for census and NCC\n");
fprintf (stderr, " ENV: TESTLRRL=1 : activat Left-Right test\n");
fprintf (stderr, " ENV: TESTLRRL_TAU=1.0 : Left-Right test threshold in pixels\n");
fprintf (stderr, " ENV: MEDIAN=0 : radius of the median filter postprocess\n");
fprintf (stderr, " ENV: TSGM=4 : regularity level\n");
fprintf (stderr, " ENV: TSGM_ITER=1 : iterations\n");
fprintf (stderr, " ENV: TSGM_FIX_OVERCOUNT=1 : fix overcounting of the data term in the energy\n");
fprintf (stderr, " ENV: TSGM_DEBUG=0 : prints debug informtion\n");
fprintf (stderr, " ENV: TSGM_2LMIN=0 : use the improved TSGM cost only for TSGM=2. Overrides TSGM value\n");
fprintf (stderr, " ENV: USE_TRUNCATED_LINEAR_POTENTIALS=0 : use the Felzenszwalb-Huttenlocher\n");
fprintf (stderr, " : truncated linear potential (when=1). P1 and P2 change meaning\n");
fprintf (stderr, " : The potential they describe becomes: V(p,q) = min(P2, P1*|p-q|)\n");
return 1;
}
// extract named parameters
char *in_min_disp_file = pick_option(&argc, &argv, (char*) "m", (char*) "");
char *in_max_disp_file = pick_option(&argc, &argv, (char*) "M", (char*) "");
int dmin = atoi(pick_option(&argc, &argv, (char*) "r", (char*) "-30"));
int dmax = atoi(pick_option(&argc, &argv, (char*) "R", (char*) "30"));
int NDIR = atoi(pick_option(&argc, &argv, (char*) "O", (char*) "4"));
float P1 = atof(pick_option(&argc, &argv, (char*) "P1", (char*) "8"));
float P2 = atof(pick_option(&argc, &argv, (char*) "P2", (char*) "32"));
float aP1 = atof(pick_option(&argc, &argv, (char*) "aP1", (char*) "1"));
float aP2 = atof(pick_option(&argc, &argv, (char*) "aP2", (char*) "1"));
float aThresh = atof(pick_option(&argc, &argv, (char*) "aThresh", (char*) "5"));
char* distance = pick_option(&argc, &argv, (char*) "t", (char*) "ad"); //{census|ad|sd|ncc|btad|btsd}
char* prefilter = pick_option(&argc, &argv, (char*) "p", (char*) "none"); //{none|census|sobelx}
char* refine = pick_option(&argc, &argv, (char*) "s", (char*) "none"); //{none|vfit|parabola|cubic}
float truncDist = atof(pick_option(&argc, &argv, (char*) "truncDist", (char*) "inf"));
char *nolr_disp_file = pick_option(&argc, &argv, (char*) "l", (char*) "");
// fill-in positional parameters
int i = 1;
char* filename_u = (argc>i) ? argv[i] : NULL; i++;
char* filename_v = (argc>i) ? argv[i] : NULL; i++;
char* filename_out = (argc>i) ? argv[i] : NULL; i++;
char* filename_cost = (argc>i) ? argv[i] : NULL; i++;
char* filename_back = (argc>i) ? argv[i] : NULL; i++;
printf("%d %d\n", dmin, dmax);
// read input
struct Img u = iio_read_vector_split(filename_u);
struct Img v = iio_read_vector_split(filename_v);
remove_nonfinite_values_Img(u, 0);
remove_nonfinite_values_Img(v, 0);
struct Img dminI(u.nx, u.ny);
struct Img dmaxI(u.nx, u.ny);
for(int i=0;i<u.npix;i++) {dminI[i]=dmin; dmaxI[i]=dmax;}
if(strcmp (in_min_disp_file,"")!=0 ){
dminI = iio_read_vector_split(in_min_disp_file);
dmaxI = iio_read_vector_split(in_max_disp_file);
// sanity check for nans
remove_nonfinite_values_Img(dminI, dmin);
remove_nonfinite_values_Img(dmaxI, dmax);
// more hacks to prevent produce due to bad inputs (min>=max)
for (int i=0;i<u.npix;i++) {
if (dmaxI[i] < dminI[i] + 1) dmaxI[i] = ceil(dminI[i] + 1);
}
}
P1 = P1*u.nch; //8
P2 = P2*u.nch; //32
// call
struct Img outoff = Img(u.nx, u.ny);
struct Img outcost = Img(u.nx, u.ny);
// variables for LR
struct Img outoffR = Img(v.nx, v.ny);
struct Img outcostR = Img(v.nx, v.ny);
struct Img dminRI(v.nx, v.ny);
struct Img dmaxRI(v.nx, v.ny);
for(int i = 0; i < v.npix; i++) {dminRI[i] = -dmax; dmaxRI[i] = -dmin;}
struct Img u_w = compute_mgm_weights(u, aP2, aThresh); // missing aP1 !! TODO
struct Img v_w = compute_mgm_weights(v, aP2, aThresh);
struct costvolume_t CC = allocate_and_fill_sgm_costvolume (u, v, dminI, dmaxI, prefilter, distance, truncDist);
for(int i = 0; i < TSGM_ITER(); i++) {
struct costvolume_t S = WITH_MGM2() ?
mgm_naive_parallelism(CC, u_w, dminI, dmaxI, &outoff, &outcost, P1, P2,
NDIR, TSGM(), USE_TRUNCATED_LINEAR_POTENTIALS(), TSGM_FIX_OVERCOUNT()) :
mgm(CC, u_w, dminI, dmaxI, &outoff, &outcost, P1, P2,
NDIR, TSGM(), USE_TRUNCATED_LINEAR_POTENTIALS(), TSGM_FIX_OVERCOUNT()) ;
print_solution_energy(u, outoff.data, CC, P1, P2);
// call subpixel refinement (modifies out and outcost)
subpixel_refinement_sgm(S, outoff.data, outcost.data, refine);
std::pair<float,float>gminmax = update_dmin_dmax(outoff, &dminI, &dmaxI);
remove_nonfinite_values_Img(dminI, gminmax.first);
remove_nonfinite_values_Img(dmaxI, gminmax.second);
// char name[200]; sprintf(name, "/tmp/%02d.tif", i); // DEBUG
// iio_write_vector_split(name, outoff); // DEBUG
// // dump disp range
// struct Img rr = Img(dmaxI);
// for(int i=0;i<rr.npix;i++) rr[i] -= dminI[i];
// iio_write_vector_split(name, rr); // DEBUG
}
if(MEDIAN()) outoff = median_filter(outoff,MEDIAN());
// save the disparity without LR
if( 0 != strcmp (nolr_disp_file, "") )
iio_write_vector_split(nolr_disp_file, outoff);
if(TESTLRRL()) {
struct costvolume_t CC = allocate_and_fill_sgm_costvolume (v, u, dminRI, dmaxRI, prefilter, distance, truncDist);
for(int i = 0; i < TSGM_ITER(); i++) {
struct costvolume_t S = WITH_MGM2() ?
mgm_naive_parallelism(CC, v_w, dminRI, dmaxRI, &outoffR, &outcostR, P1, P2,
NDIR, TSGM(), USE_TRUNCATED_LINEAR_POTENTIALS(), TSGM_FIX_OVERCOUNT()) :
mgm(CC, v_w, dminRI, dmaxRI, &outoffR, &outcostR, P1, P2,
NDIR, TSGM(), USE_TRUNCATED_LINEAR_POTENTIALS(), TSGM_FIX_OVERCOUNT()) ;
print_solution_energy(v, outoffR.data, CC, P1, P2);
// call subpixel refinement (modifies out and outcost)
subpixel_refinement_sgm(S, outoffR.data, outcostR.data, refine);
std::pair<float,float>gminmax = update_dmin_dmax(outoffR, &dminRI, &dmaxRI);
remove_nonfinite_values_Img(dminRI, gminmax.first);
remove_nonfinite_values_Img(dmaxRI, gminmax.second);
}
if(MEDIAN()) outoffR = median_filter(outoffR,MEDIAN());
Img tmpL(outoff);
Img tmpR(outoffR);
leftright_test(outoffR, tmpL, TESTLRRL_TAU()); // R-L
leftright_test(outoff, tmpR, TESTLRRL_TAU()); // L-R
}
// save the disparity
struct Img out = Img(u.nx, u.ny);
for(int i=0;i<u.nx*u.ny;i++) out.data[i]=outoff[i];
// generate the backprojected image
struct Img syn = Img(u.nx, u.ny, u.nch);
for(int x=0;x<u.nx;x++)
for(int y=0;y<u.ny;y++){
Point p(x,y);
Point q = Point(outoff[x+u.nx*y],0);
for(int c=0;c<u.nch;c++)
if( check_inside_image(p+q, v) )
syn.data[x+y*u.nx + c*u.npix] = v.data[x+q.x+(y+q.y)*v.nx + c*v.npix];
else
syn.data[x+y*u.nx+ c*u.npix] = u.data[x+y*u.nx+ c*u.npix];
}
iio_write_vector_split(filename_out, out);
if(filename_cost) iio_write_vector_split(filename_cost, outcost);
if(filename_back) iio_write_vector_split(filename_back, syn);
return 0;
}