-
Notifications
You must be signed in to change notification settings - Fork 20
/
mgm_core.cc
834 lines (692 loc) · 33.2 KB
/
mgm_core.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
/* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.*/
/* Copyright (C) 2015, Gabriele Facciolo <facciolo@cmla.ens-cachan.fr>,
* Carlo de Franchis <carlo.de-franchis@ens-cachan.fr>,
* Enric Meinhardt <enric.meinhardt@cmla.ens-cachan.fr>*/
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "math.h"
#include <numeric>
#include <algorithm>
#include <vector>
#include <cstring>
#include "assert.h"
//// structures to wrap images and points
#include "img.h"
#include "img_tools.h"
#include "point.h"
// from img_tools.h
//inline int check_inside_image(const Point p, const struct Img &u) {
// int nx = u.nx;
// int ny = u.ny;
// float x = p.x;
// float y = p.y;
// if(x>=0 && y>=0 && x<nx && y<ny) return 1;
// else return 0;
//}
/********************** COSTVOLUME *****************************/
#include "mgm_costvolume.h"
//struct costvolume_t allocate_costvolume (struct Img min, struct Img max) {
// struct costvolume_t cv;
// cv.vectors = std::vector< Dvec >(min.npix);
// for (int i=0;i< min.npix;i++)
// cv[i].init(min[i], max[i]);
// return cv;
//}
struct costvolume_t allocate_costvolume (struct Img min, struct Img max);
/********************** MGM *****************************/
#define __max(a,b) (((a) > (b)) ? (a) : (b))
#define __min(a,b) (((a) < (b)) ? (a) : (b))
// fast alternatives to: __min(a,__min(b,c))
// fastestest ?
#define fmin3_(x, y, z) \
(((x) < (y)) ? (((z) < (x)) ? (z) : (x)) : (((z) < (y)) ? (z) : (y)))
// fast and easy to understand
static inline float fmin3(float a, float b, float c)
{
float m = a;
if (m > b) m = b;
if (m > c) m = c;
return m;
}
// intervening points p,q,r
// faster variant for the case 2
// THIS IS THE SIMPLEST MGM WEIGHT UPDATE FUNCTION
inline void update_cost2(Dvec &Lp, Dvec &CCp, Dvec &Lq, Dvec &Lr, const float P1, const float P2) {
float min1L_all = Lq.get_minvalue();
float min2L_all = Lr.get_minvalue();
for(int o=Lp.min;o<=Lp.max;o++) {
float C = CCp[o]; // the matching cost for p <-> p+d
float vL0 = Lq[o]; // the neighbor has the same label
float vLP1 = __min( Lq[o-1], Lq[o+1]) + P1; // the neighbour has a similar (+-1) label
float vLP2 = min1L_all + P2; // the minimum label of the neighbour
float v2L0 = Lr[o]; // the neighbor has the same label
float v2LP1 = __min( Lr[o-1], Lr[o+1]) + P1; // the neighbour has a similar (+-1) label
float v2LP2 = min2L_all + P2; // the minimum label of the neighbour
float edge_potentials = 0;
edge_potentials += (fmin3(vL0 , vLP1 , vLP2 ) - min1L_all) / 2;
edge_potentials += (fmin3(v2L0, v2LP1, v2LP2) - min2L_all) / 2;
Lp.set_nolock(o, C + edge_potentials);
}
}
// intervening points p,q,r
// THIS FUNCTION CONSIDERS 4 NEIGHBORS AND WEIGHTED EDGES
inline void update_costW(Dvec &Lp, Dvec &CCp, Dvec &Lq, Dvec &Lr, Dvec &Ls, Dvec &Lt, const float P1, const float P2,
const float DeltaI1, const float DeltaI2, const float DeltaI3, const float DeltaI4, const int howmany) {
float minL_all = INFINITY;
float min2L_all = INFINITY;
float min3L_all = INFINITY;
float min4L_all = INFINITY;
minL_all = Lq.get_minvalue();
if (howmany >= 2) min2L_all = Lr.get_minvalue();
if (howmany >= 3) min3L_all = Ls.get_minvalue();
if (howmany >= 4) min4L_all = Lt.get_minvalue();
for(int o=Lp.min;o<=Lp.max;o++) {
float C = CCp[o]; // the matching cost for p <-> p+d
//float C = computeC( p,p+Point(o,0), u,v); // the matching cost for p <-> p+d // SLOWER
float edge_potentials = 0;
float vL0 = Lq[o]; // the neighbor has the same label
float vLP1 = __min( Lq[o-1], Lq[o+1]) + P1*DeltaI1; // the neighbour has a similar (+-1) label
float vLP2 = minL_all + P2*DeltaI1; // the minimum label of the neighbour
edge_potentials += fmin3(vL0 , vLP1 , vLP2 ) - minL_all;
if (howmany >= 2) {
float v2L0 = Lr[o]; // the neighbor has the same label
float v2LP1 = __min( Lr[o-1], Lr[o+1]) + P1*DeltaI2; // the neighbour has a similar (+-1) label
float v2LP2 = min2L_all + P2*DeltaI2; // the minimum label of the neighbour
edge_potentials += fmin3(v2L0, v2LP1, v2LP2) - min2L_all;
}
if (howmany >= 3) {
float v3L0 = Ls[o]; // the neighbor has the same label
float v3LP1 = __min( Ls[o-1], Ls[o+1]) + P1*DeltaI3; // the neighbour has a similar (+-1) label
float v3LP2 = min3L_all + P2*DeltaI3; // the minimum label of the neighbour
edge_potentials += fmin3(v3L0, v3LP1, v3LP2) - min3L_all;
}
if (howmany >= 4) {
float v4L0 = Lt[o]; // the neighbor has the same label
float v4LP1 = __min( Lt[o-1], Lt[o+1]) + P1*DeltaI4; // the neighbour has a similar (+-1) label
float v4LP2 = min4L_all + P2*DeltaI4; // the minimum label of the neighbour
edge_potentials += fmin3(v4L0, v4LP1, v4LP2) - min4L_all;
}
Lp.set_nolock(o, C + edge_potentials / howmany);
}
}
// compute in place the min convolution of vector M[] (of lenght mm)
// with the distance function with slope P1 and truncated at P2 (may be INFINITY)
// minMall is the minimum of the input M[] which is needed for the truncated distance
// minMall may be a value lower than the values stored in M[]
static void minConvTruncatedLinear(float M[], const int mm, const float minMall, const float P1, const float P2) {
// forward pass
for(int o=1; o<mm; o++)
M[o] = __min(M[o-1] + P1, M[o]);
// backward pass
for(int o=mm-2; o>=0; o--)
M[o] = __min(M[o+1] + P1, M[o]);
// truncated distance
if (P2 < INFINITY)
for(int o=0; o<mm; o++)
M[o] = __min(M[o], minMall + P2);
}
static void FixBounrady_for_minConvTruncatedLinear(const float I[], const int imin, const int imax, float M[], const int mmin, const int mmax, const float P1) {
// handle boundary cases (left)
if (imin < mmin) {
float T = I[0];
for(int o=imin+1;o<=mmin;o++) {
float Inext = o<=imax ? I[o-imin]: INFINITY;
T = __min(T + P1, Inext);
}
M[0] = __min(M[0], T);
}
// handle boundary cases (right)
if (imax > mmax) {
float T = I[imax-imin];
for(int o=imax-1;o>=mmax;o--) {
float Inext = o>=imin ? I[o-imin]: INFINITY;
T = __min(T + P1, Inext);
}
M[mmax-mmin] = __min(M[mmax-mmin], T);
}
}
// intervening points p,q,r
// faster variant for the case 2
// Adaptation of the Felzenszwalb-Huttenlocher message passing for the truncated linear model
// see: "Efficient Belief Propagation for Early Vision"
// P1 and P2 ARE USED WITH A DIFFERENT MEANING
// HERE THE COST IS: V(p,q) = min(P2, P1*|p-q|)
inline void update_cost2_trunclinear(Dvec &Lp, Dvec &CCp, Dvec &Lq, Dvec &Lr, const float P1, const float P2) {
float min1L_all = Lq.get_minvalue();
float min2L_all = Lr.get_minvalue();
float M1[Lp.max-Lp.min+1];
float M2[Lp.max-Lp.min+1];
int mm = Lp.min;
// initialize copying the values
for(int o=Lp.min;o<=Lp.max;o++) M1[o-mm] = Lq[o];
FixBounrady_for_minConvTruncatedLinear(&(Lq.data[0]), Lq.min, Lq.max, M1, Lp.min, Lp.max, P1);
minConvTruncatedLinear(M1, Lp.max-Lp.min+1, min1L_all, P1, P2);
for(int o=Lp.min;o<=Lp.max;o++) M2[o-mm] = Lr[o];
FixBounrady_for_minConvTruncatedLinear(&(Lr.data[0]), Lr.min, Lr.max, M2, Lp.min, Lp.max, P1);
minConvTruncatedLinear(M2, Lp.max-Lp.min+1, min2L_all, P1, P2);
for(int o=Lp.min;o<=Lp.max;o++) {
Lp.set_nolock(o, CCp[o] + (M1[o-mm] -min1L_all + M2[o-mm] - min2L_all)/2);
}
}
// intervening points p,q,r,s,t
// Adaptation of the Felzenszwalb-Huttenlocher message passing for the truncated linear model
// see: "Efficient Belief Propagation for Early Vision"
// P1 and P2 ARE USED WITH A DIFFERENT MEANING
// HERE THE COST IS: V(p,q) = min(P2, P1*|p-q|)
// THIS FUNCTION CONSIDERS 4 NEIGHBORS AND WEIGHTED EDGES
inline void update_costW_trunclinear(Dvec &Lp, Dvec &CCp, Dvec &Lq, Dvec &Lr, Dvec &Ls, Dvec &Lt, const float P1, const float P2,
const float DeltaI1, const float DeltaI2, const float DeltaI3, const float DeltaI4, const int howmany) {
float min1L_all = INFINITY;
float min2L_all = INFINITY;
float min3L_all = INFINITY;
float min4L_all = INFINITY;
min1L_all = Lq.get_minvalue();
if (howmany >= 2) min2L_all = Lr.get_minvalue();
if (howmany >= 3) min3L_all = Ls.get_minvalue();
if (howmany >= 4) min4L_all = Lt.get_minvalue();
int mm = Lp.min;
int NN = Lp.max-Lp.min+1;
float M1[NN];
float M2[NN];
float M3[NN];
float M4[NN];
// initialize copying the values
for(int o=Lp.min;o<=Lp.max;o++) M1[o-mm] = Lq[o];
minConvTruncatedLinear(M1, NN, min1L_all, P1*DeltaI1, P2*DeltaI1);
if (howmany >= 2) {
// initialize copying the values
for(int o=Lp.min;o<=Lp.max;o++) M2[o-mm] = Lr[o];
minConvTruncatedLinear(M2, NN, min2L_all, P1*DeltaI2, P2*DeltaI2);
}
if (howmany >= 3) {
// initialize copying the values
for(int o=Lp.min;o<=Lp.max;o++) M3[o-mm] = Ls[o];
minConvTruncatedLinear(M3, NN, min3L_all, P1*DeltaI3, P2*DeltaI3);
}
if (howmany >= 4) {
// initialize copying the values
for(int o=Lp.min;o<=Lp.max;o++) M4[o-mm] = Lt[o];
minConvTruncatedLinear(M4, NN, min4L_all, P1*DeltaI4, P2*DeltaI4);
}
// compute the cost
for(int o=Lp.min;o<=Lp.max;o++) {
float edge_potentials = M1[o-mm] - min1L_all;
if (howmany >= 2) edge_potentials += M2[o-mm] - min2L_all;
if (howmany >= 3) edge_potentials += M3[o-mm] - min3L_all;
if (howmany >= 4) edge_potentials += M4[o-mm] - min4L_all;
Lp.set_nolock(o, CCp[o] + edge_potentials/howmany);
}
}
inline void update_cost2Lmin(Dvec &Lp, Dvec &CCp, Dvec &Lq, Dvec &Lr, float P1, float P2) {
// The profiles of the 1D cost functions are of this form
//
// P2 --------------------------
// /
// \ /
// P1 P1
// \ /
// \ /
// -2 -1 --0---1---2---3----
//
// When combined in 2D these functions lead to the following cases (with P1<P2)
// produces an odd shape shape in 2D
// |
// |
// (2)P2 P2+P1 ... P2+P2
// | |
// | | .
// | | .
// | |
// P1+P1 --- (1)P1 --- P1+P1 ... P1+P2
// | | | |
// | | | |
// (-1)P1 === (0) === (1)P1 ======... (2)P2 .......
// | | |
// | | |
// P1+P1 --- P1 --- P1+P1 -----
// |
// |
//
// We would like to try something more isotropic like
// |
// |
// (2)P2 P2+P1 ... P2+P2
// | |
// | | .
// | | .
// | |
// P1+P1 --- (1).3P1 --- P1+P1 ... P1+P2
// | | | |
// | | | |
// (-1).3P1 === (0) === (1).3P1======... (2)P2 .......
// | | |
// | | |
// P1+P1 --- .3P1 --- P1+P1 -----
// |
// |
//
// But the net effect is rather inperceptible
float min1L_all = Lq.get_minvalue();
float min2L_all = Lr.get_minvalue();
// MUST TEST 9 CONFIGURATIONS!
for(int o=Lp.min;o<=Lp.max;o++) {
float C = CCp[o]; // the matching cost for p <-> p+d
//float C = computeC( p,p+Point(o,0), u,v); // the matching cost for p <-> p+d // SLOWER
float edge_potentials = 0;
float vL0 = Lq[o]; // the neighbor has the same label
float vLP1 = __min( Lq[o-1], Lq[o+1]) + P1; // the neighbour has a similar (+-1) label
float vLP2 = min1L_all + P2; // the minimum label of the neighbour
float v2L0 = Lr[o]; // the neighbor has the same label
float v2LP1 = __min( Lr[o-1], Lr[o+1]) + P1; // the neighbour has a similar (+-1) label
float v2LP2 = min2L_all + P2; // the minimum label of the neighbour
edge_potentials = fmin3(
fmin3(
vL0 + v2LP1 -0.7*P1 , // +-1,0
vLP1 + v2L0 -0.7*P1 , // 0,+-1
vLP1 + v2LP1 //-2*P1+2*sqrt(2.0)*P1 // +-1,+-1
),
fmin3(
vL0 + v2L0 , // 0,0
vLP1 + v2LP2 ,//-P1 +P2 , // +-1,others
vLP2 + v2LP1 //-P1 +P2 // others,+-1
),
fmin3(
vLP2 + v2LP2 , // others,others
vL0 + v2LP2 , //+P2 , // others,0
vLP2 + v2L0 //+P2 // 0,others
)
) / 2 - (min1L_all + min2L_all)/2;
Lp.set_nolock(o, C + edge_potentials);
}
}
struct Pass_setup {
int row_major;
Point dir1;
Point dir2;
Point dir3;
Point dir4;
int inc_x; // 1: ascending x 0: descending x
int inc_y; // 1: ascending y 0: descending y
// 0: use dir1 if y odd dir2 otherwise
Pass_setup(Point d1, Point d2, Point d3, Point d4, int ix, int iy, int rm) {
dir1=d1; dir2=d2; dir3=d3; dir4=d4;
inc_x=ix;inc_y=iy;
row_major=rm;
}
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// mgm returns the "aggregated" cost volume, out, and outcost without any other refinement
// This is the diagonally parallel implementation of MGM. Compared to the naive
// version, this one uses less memory and scales better with the number of cores.
// However, I've observed that it may also be more cache intensive.
struct costvolume_t mgm(struct costvolume_t CC, const struct Img &in_w,
const struct Img &dminI, const struct Img &dmaxI,
struct Img *out, struct Img *outcost,
const float P1, const float P2, const int NDIR, const int MGM,
const int USE_FELZENSZWALB_POTENTIALS = 0, // USE SGM(0) or FELZENSZWALB(1) POTENTIALS
int SGM_FIX_OVERCOUNT = 1) // fix the overcounting in SGM following (Drory etal. 2014)
{
int nx = dminI.nx;
int ny = dminI.ny;
// check the content of in_w is it all 1?
int USE_IMAGE_DEPENDENT_WEIGHTS=0;
for (int i=0; i<in_w.ncol*in_w.nrow*in_w.nch; i++)
if (in_w[i] != 1.0) USE_IMAGE_DEPENDENT_WEIGHTS = 1;
if (USE_IMAGE_DEPENDENT_WEIGHTS) printf(" USING IMAGE DEPENDENT WEIGHTS\n");
// run SGM // ALLOCATED AND INITIALIZED TO 0 (THIS IS THE costvolume THAT IS RETURNED!)
struct costvolume_t S = allocate_costvolume(dminI, dmaxI);
std::vector<Pass_setup > direct;
// PASSES
//
// O: first pixel in the scan
// c: current pixel in the scan
// - or |: processed pixels (according to the scan order)
// 1,2,3,4: considered neighbours in the corresponding order
//
// (I) (II) (III) (IV)
//
// O----------- O | | | | | | | | | O
// ------------ c--1-- | | | | 4 1 3 | | | |
// ------------ ---4--2--3-- | | | | | | | | | | |
// ------------ ------------ | | | | 2 o o 2 | | | |
// -3--2--4---- ------------ | | | | | | | | | | |
// -1--c ------------ | | | | 3 1 4 | | | |
// -----------O | | | | | | | | | | |
//
//
// NEIGHBORS
//
// (-1,-1) (0,-1) (1,-1)
// |
// |
// (-1,0) --- o --- (1,0)
// |
// |
// (-1,1) (0,1) (1,1)
//
// with MGM == 1 only the neighbor #1 is considered
// with MGM == 2 #1 and #2 are considered
// with MGM == 4 #1 to #4 are considered
// horizontal and vertical
direct.push_back( Pass_setup(Point(-1,0) , Point(0,-1) , Point(-1,-1) , Point(1,-1) ,1,1,1) ); // (I)
direct.push_back( Pass_setup(Point(1,0) , Point(0,1) , Point(1,1) , Point(-1,1) ,0,0,1) ); // (II)
direct.push_back( Pass_setup(Point(0,1) , Point(-1,0) , Point(-1,1) , Point(-1,-1) ,1,0,0) ); // (III)
direct.push_back( Pass_setup(Point(0,-1) , Point(1,0) , Point(1,-1) , Point(1,1) ,0,1,0) ); // (IV)
// diagonals 45º
direct.push_back( Pass_setup(Point(-1,-1) , Point(1,-1) , Point(0,-1) , Point(1,0) ,0,1,1) );
direct.push_back( Pass_setup(Point(1,-1) , Point(1,1) , Point(1,0) , Point(0,1) ,0,0,0) );
direct.push_back( Pass_setup(Point(1,1) , Point(-1,1) , Point(0,1) , Point(-1,0) ,1,0,1) );
direct.push_back( Pass_setup(Point(-1,1) , Point(-1,-1) , Point(-1,0) , Point(0,-1) ,1,1,0) );
// 22.5º
// ...
// translate pass directions to edges encoded in channels of the image w
// THIS IS TIED TO THE INFORMATION IN THE VECTOR direct
// THE SAME VECTORS COULD BE OBTAINED PROGRAMATICALLY FROM direct
// str::vector < std::pair<Point, int> > dir_to_idx;
// for(int i=0;i<7;i++)
// dir_to_idx.push_back( std::pair<Point, int> (direct[i].dir1 ,i ));
int pass_to_channel_1[] = {0,1,2,3,4,5,6,7};
int pass_to_channel_2[] = {3,2,0,1,5,6,7,4};
int pass_to_channel_3[] = {4,6,7,5,3,1,2,0};
int pass_to_channel_4[] = {5,7,4,6,1,2,0,3};
// local Lr (could be implemented with a couple of line buffers)
struct costvolume_t Lr(CC);
for(int pass=0;pass<NDIR;pass++)
{
printf("%d", pass); fflush(stdout);
Pass_setup dir = direct[pass];
// reset the values of Lr for this passage
#pragma omp parallel for
for(int pidx=0; pidx<nx*ny; pidx++)
for(int o=Lr[pidx].min;o<=Lr[pidx].max;o++)
Lr[pidx].set_nolock(o, CC[pidx][o] ); // no omp critic is inside set_nolock
int maxii = nx, maxjj = ny;
if( !dir.row_major ) { maxii = ny; maxjj = nx; }
// scan in the horizontal direction left to right
for(int ii=0; ii<maxii+2*maxjj; ii++) {
#pragma omp parallel for schedule(static,1)
for(int jj=0; jj<maxjj; jj++)
{
// ensure diagonal scan (slope 2)
int x=ii -2*jj, y=jj;
if(x < 0 || x >= maxii) continue;
int maxnx = maxii, maxny = maxjj;
// swap the indices if we are in column major
#define SWAPi(a,b) {int swap=a;a=b;b=swap;}
if (!dir.row_major) {
SWAPi(x, y);
SWAPi(maxnx, maxny);
}
// reverse the direction
if(dir.inc_x==0) x = (maxnx-1)-x;
if(dir.inc_y==0) y = (maxny-1)-y;
Point p(x,y); // current point
Point pr = p + dir.dir1; // dir1 neighbor
Point pr2 = p + dir.dir2; // dir2 neighbor
Point pr3 = p + dir.dir3; // dir3 neighbor
Point pr4 = p + dir.dir4; // dir4 neighbor
// base index of the neighbor
int pidx = (p.x +p.y *nx);
int pridx = (pr.x+pr.y*nx);
int pr2idx = (pr2.x+pr2.y*nx);
int pr3idx = (pr3.x+pr3.y*nx);
int pr4idx = (pr4.x+pr4.y*nx);
if (!check_inside_image(pr ,dminI)) continue;
if (!check_inside_image(pr2,dminI)) continue;
if (!check_inside_image(pr3,dminI)) continue;
if (!check_inside_image(pr4,dminI)) continue;
int TSGM_2LMIN = 0;
if(TSGM_2LMIN>0) { // THIS IS A LEGACY FEATURE
// update_cost2L2(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
update_cost2Lmin(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
}
else if(USE_IMAGE_DEPENDENT_WEIGHTS) { // IMAGE DEPENDENT WEIGHTS
#define val(u, p, ch) u.data[(p.x) + (u.nx)*(p.y) + (ch)*(u.npix)]
float DeltaI1 = val(in_w, p, pass_to_channel_1[pass]);
float DeltaI2 = val(in_w, p, pass_to_channel_2[pass]);
float DeltaI3 = val(in_w, p, pass_to_channel_3[pass]);
float DeltaI4 = val(in_w, p, pass_to_channel_4[pass]);
#undef val
if(USE_FELZENSZWALB_POTENTIALS>0)
update_costW_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
DeltaI1, DeltaI2, DeltaI3, DeltaI4, MGM);
else
update_costW(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
DeltaI1, DeltaI2, DeltaI3, DeltaI4, MGM);
}
else { // WITHOUT IMAGE DEPENDENT WEIGHTS
if(USE_FELZENSZWALB_POTENTIALS>0) {
if(MGM==2)
update_cost2_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
else
update_costW_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
1.0, 1.0, 1.0, 1.0, MGM);
}
else if(MGM==2)
update_cost2(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
else
update_costW(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
1.0, 1.0, 1.0, 1.0, MGM);
}
Lr[pidx].get_minvalue(); // precompute min value in the current list
}
}
// accumulate S for the current orientation
#pragma omp parallel for
for(int i=0; i<nx*ny; i++) {
for(int o=Lr[i].min;o<=Lr[i].max;o++) {
S[i].increment_nolock(o, Lr[i][o]); // pragma omp critic is inside set
}
}
}
// WTA
#pragma omp parallel for
for(int i=0;i<nx*ny;i++) {
float minP;
float minL=INFINITY;
for(int o=S[i].min;o<=S[i].max;o++) {
// overcounting correction (Drory etal. 2014)
if (SGM_FIX_OVERCOUNT==1)
S[i].set_nolock(o, S[i][o] - (NDIR -1) * CC[i][o]);
if(std::isfinite(S[i][o]))
if(minL > S[i][o]) {
minL = S[i][o];
minP = o;
}
}
(*out)[i] = minP;
(*outcost)[i] = minL;
}
// return the aggregated costvolume
return S;
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// mgm returns the "aggregated" cost volume, out, and outcost without any other refinement
// This is the naive parallel implementation of MGM, all traversals (up to 8) are computed
// in parallel. Thus lots of memory is required.
struct costvolume_t mgm_naive_parallelism(struct costvolume_t CC, const struct Img &in_w,
const struct Img &dminI, const struct Img &dmaxI,
struct Img *out, struct Img *outcost,
const float P1, const float P2, const int NDIR, const int MGM,
const int USE_FELZENSZWALB_POTENTIALS = 0, // USE SGM(0) or FELZENSZWALB(1) POTENTIALS
int SGM_FIX_OVERCOUNT = 1) // fix the overcounting in SGM following (Drory etal. 2014)
{
int nx = dminI.nx;
int ny = dminI.ny;
// check the content of in_w is it all 1?
int USE_IMAGE_DEPENDENT_WEIGHTS=0;
for (int i=0; i<in_w.ncol*in_w.nrow*in_w.nch; i++)
if (in_w[i] != 1.0) USE_IMAGE_DEPENDENT_WEIGHTS = 1;
if (USE_IMAGE_DEPENDENT_WEIGHTS) printf(" USING IMAGE DEPENDENT WEIGHTS\n");
// run SGM // ALLOCATED AND INITIALIZED TO 0 (THIS IS THE costvolume THAT IS RETURNED!)
struct costvolume_t S = allocate_costvolume(dminI, dmaxI);
std::vector<Pass_setup > direct;
// PASSES
//
// O: first pixel in the scan
// c: current pixel in the scan
// - or |: processed pixels (according to the scan order)
// 1,2,3,4: considered neighbours in the corresponding order
//
// (I) (II) (III) (IV)
//
// O----------- O | | | | | | | | | O
// ------------ c--1-- | | | | 4 1 3 | | | |
// ------------ ---4--2--3-- | | | | | | | | | | |
// ------------ ------------ | | | | 2 o o 2 | | | |
// -3--2--4---- ------------ | | | | | | | | | | |
// -1--c ------------ | | | | 3 1 4 | | | |
// -----------O | | | | | | | | | | |
//
//
// NEIGHBORS
//
// (-1,-1) (0,-1) (1,-1)
// |
// |
// (-1,0) --- o --- (1,0)
// |
// |
// (-1,1) (0,1) (1,1)
//
// with MGM == 1 only the neighbor #1 is considered
// with MGM == 2 #1 and #2 are considered
// with MGM == 4 #1 to #4 are considered
// horizontal and vertical
direct.push_back( Pass_setup(Point(-1,0) , Point(0,-1) , Point(-1,-1) , Point(1,-1) ,1,1,1) ); // (I)
direct.push_back( Pass_setup(Point(1,0) , Point(0,1) , Point(1,1) , Point(-1,1) ,0,0,1) ); // (II)
direct.push_back( Pass_setup(Point(0,1) , Point(-1,0) , Point(-1,1) , Point(-1,-1) ,1,0,0) ); // (III)
direct.push_back( Pass_setup(Point(0,-1) , Point(1,0) , Point(1,-1) , Point(1,1) ,0,1,0) ); // (IV)
// diagonals 45º
direct.push_back( Pass_setup(Point(-1,-1) , Point(1,-1) , Point(0,-1) , Point(1,0) ,0,1,1) );
direct.push_back( Pass_setup(Point(1,-1) , Point(1,1) , Point(1,0) , Point(0,1) ,0,0,0) );
direct.push_back( Pass_setup(Point(1,1) , Point(-1,1) , Point(0,1) , Point(-1,0) ,1,0,1) );
direct.push_back( Pass_setup(Point(-1,1) , Point(-1,-1) , Point(-1,0) , Point(0,-1) ,1,1,0) );
// 22.5º
// ...
// translate pass directions to edges encoded in channels of the image w
// THIS IS TIED TO THE INFORMATION IN THE VECTOR direct
// THE SAME VECTORS COULD BE OBTAINED PROGRAMATICALLY FROM direct
// str::vector < std::pair<Point, int> > dir_to_idx;
// for(int i=0;i<7;i++)
// dir_to_idx.push_back( std::pair<Point, int> (direct[i].dir1 ,i ));
int pass_to_channel_1[] = {0,1,2,3,4,5,6,7};
int pass_to_channel_2[] = {3,2,0,1,5,6,7,4};
int pass_to_channel_3[] = {4,6,7,5,3,1,2,0};
int pass_to_channel_4[] = {5,7,4,6,1,2,0,3};
#pragma omp parallel for
for(int pass=0;pass<NDIR;pass++)
{
printf("%d", pass); fflush(stdout);
Pass_setup dir = direct[pass];
// local Lr (could be implemented with a couple of line buffers)
struct costvolume_t Lr(CC);
int maxii = nx, maxjj = ny;
if( !dir.row_major ) { maxii = ny; maxjj = nx; }
// scan in the horizontal direction left to right
for(int jj=0; jj<maxjj; jj++) {
for(int ii=0; ii<maxii; ii++)
{
int x=ii, y=jj;
int maxnx = maxii, maxny = maxjj;
// swap the indices if we are in column major
#define SWAPi(a,b) {int swap=a;a=b;b=swap;}
if (!dir.row_major) {
SWAPi(x, y);
SWAPi(maxnx, maxny);
}
// reverse the direction
if(dir.inc_x==0) x = (maxnx-1)-x;
if(dir.inc_y==0) y = (maxny-1)-y;
Point p(x,y); // current point
Point pr = p + dir.dir1; // dir1 neighbor
Point pr2 = p + dir.dir2; // dir2 neighbor
Point pr3 = p + dir.dir3; // dir3 neighbor
Point pr4 = p + dir.dir4; // dir4 neighbor
// base index of the neighbor
int pidx = (p.x +p.y *nx);
int pridx = (pr.x+pr.y*nx);
int pr2idx = (pr2.x+pr2.y*nx);
int pr3idx = (pr3.x+pr3.y*nx);
int pr4idx = (pr4.x+pr4.y*nx);
if (!check_inside_image(pr ,dminI)) continue;
if (!check_inside_image(pr2,dminI)) continue;
if (!check_inside_image(pr3,dminI)) continue;
if (!check_inside_image(pr4,dminI)) continue;
int TSGM_2LMIN = 0;
if(TSGM_2LMIN>0) { // THIS IS A LEGACY FEATURE (DISABLED)
// update_cost2L2(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
update_cost2Lmin(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
}
else if(USE_IMAGE_DEPENDENT_WEIGHTS) { // IMAGE DEPENDENT WEIGHTS
#define val(u, p, ch) u.data[(p.x) + (u.nx)*(p.y) + (ch)*(u.npix)]
float DeltaI1 = val(in_w, p, pass_to_channel_1[pass]);
float DeltaI2 = val(in_w, p, pass_to_channel_2[pass]);
float DeltaI3 = val(in_w, p, pass_to_channel_3[pass]);
float DeltaI4 = val(in_w, p, pass_to_channel_4[pass]);
#undef val
if(USE_FELZENSZWALB_POTENTIALS>0)
update_costW_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
DeltaI1, DeltaI2, DeltaI3, DeltaI4, MGM);
else
update_costW(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
DeltaI1, DeltaI2, DeltaI3, DeltaI4, MGM);
}
else { // WITHOUT IMAGE DEPENDENT WEIGHTS
if(USE_FELZENSZWALB_POTENTIALS>0) {
if(MGM==2)
update_cost2_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
else
update_costW_trunclinear(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
1.0, 1.0, 1.0, 1.0, MGM);
}
else if(MGM==2)
update_cost2(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], P1, P2);
else
update_costW(Lr[pidx], CC[pidx], Lr[pridx], Lr[pr2idx], Lr[pr3idx], Lr[pr4idx], P1, P2,
1.0, 1.0, 1.0, 1.0, MGM);
}
Lr[pidx].get_minvalue(); // precompute min value in the current list
}
}
// accumulate S for the current orientation
#pragma omp critical
{
for(int i=0; i<nx*ny; i++) {
for(int o=Lr[i].min;o<=Lr[i].max;o++) {
S[i].increment_nolock(o, Lr[i][o]); // pragma omp critic is inside set
}
}
}
}
// WTA
#pragma omp parallel for
for(int i=0;i<nx*ny;i++) {
float minP;
float minL=INFINITY;
for(int o=S[i].min;o<=S[i].max;o++) {
// overcounting correction (Drory etal. 2014)
if (SGM_FIX_OVERCOUNT==1)
S[i].set_nolock(o, S[i][o] - (NDIR -1) * CC[i][o]);
if(std::isfinite(S[i][o]))
if(minL > S[i][o]) {
minL = S[i][o];
minP = o;
}
}
(*out)[i] = minP;
(*outcost)[i] = minL;
}
// return the aggregated costvolume
return S;
}