-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_few_shot.py
153 lines (134 loc) · 5.79 KB
/
eval_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import os
import random
import numpy as np
import torch
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from torch import nn
from tqdm import tqdm
from data.modelnet import load_modelnet_data, load_scanobjectnn
from models.encoder import DGCNN, PointNet
from models.model import ClusterNet
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--root', type=str, default='/home/gmei/Data/data', help="dataset path")
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
parser.add_argument('--emb_dims', type=int, default=1024, metavar='N',
help='Dimension of embeddings')
parser.add_argument('--k', type=int, default=20, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--num_clus', type=int, default=64, metavar='N',
help='Num of nearest neighbors to use')
parser.add_argument('--dataset', type=str, default='modelnet40', metavar='N',
choices=['modelnet40', 'scanobjectnn'],
help='Dataset to evaluate')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--n_runs', type=int, default=10,
help='Num of few-shot runs')
parser.add_argument('--k_way', type=int, default=5,
help='Num of classes in few-shot')
parser.add_argument('--m_shot', type=int, default=20,
help='Num of samples in one class')
parser.add_argument('--n_query', type=int, default=20,
help='Num of query samples in one class')
parser.add_argument('--model_path', type=str, default='pointnet_ot_64MF', metavar='N',
help='Pretrained model path')
args = parser.parse_args()
device = torch.device("cuda")
# Try to load models
# net = DGCNN(args.emb_dims, args.k, args.dropout, -1).to(device)
net = PointNet(args.emb_dims, is_normal=False, feature_transform=True, feat_type='global').to(device)
# model_path = os.path.join(f'checkpoints/{args.exp_name}/models/', 'best_model.pth')
model_path = os.path.join(f'checkpoints/{args.model_path}/models/', 'best_model.pth')
model = ClusterNet(net, dim=args.emb_dims, num_clus=args.num_clus, ablation='all', c_type='ot')
try:
model.load_state_dict(torch.load(model_path))
except Exception as e:
print('No existing model, starting training from scratch {}'.format(e))
model.load_state_dict(torch.load(model_path))
model.inv_head = nn.Identity()
print("Model Loaded !!")
if args.dataset == 'modelnet40':
# ModelNet40 - Few Shot Learning
data_train, label_train = load_modelnet_data(args.root, 'train')
data_test, label_test = load_modelnet_data(args.root, 'test')
n_cls = 40
elif args.dataset == 'scanobjectnn':
# ScanObjectNN - Few Shot Learning
data_train, label_train = load_scanobjectnn(args.root, 'train')
data_test, label_test = load_scanobjectnn(args.root, 'test')
n_cls = 15
else:
raise NotImplementedError
label_idx = {}
for key in range(n_cls):
label_idx[key] = []
for i, label in enumerate(label_train):
# if label[0] == key:
if label == key:
label_idx[key].append(i)
acc = []
for run in tqdm(range(args.n_runs)):
k = args.k_way
m = args.m_shot
n_q = args.n_query
k_way = random.sample(range(n_cls), k)
data_support = []
label_support = []
data_query = []
label_query = []
for i, class_id in enumerate(k_way):
support_id = random.sample(label_idx[class_id], m)
query_id = random.sample(list(set(label_idx[class_id]) - set(support_id)), n_q)
pc_support_id = data_train[support_id]
pc_query_id = data_train[query_id]
data_support.append(pc_support_id)
label_support.append(i * np.ones(m))
data_query.append(pc_query_id)
label_query.append(i * np.ones(n_q))
data_support = np.concatenate(data_support)
label_support = np.concatenate(label_support)
data_query = np.concatenate(data_query)
label_query = np.concatenate(label_query)
feats_train = []
labels_train = []
model = model.eval()
for i in range(k * m):
data = torch.from_numpy(np.expand_dims(data_support[i], axis=0))
label = int(label_support[i])
data = data.permute(0, 2, 1).to(device)
data = torch.cat((data, data))
with torch.no_grad():
feat = model.backbone(data)[0][0, :]
feat = feat.detach().cpu().numpy().tolist()
feats_train.append(feat)
labels_train.append(label)
feats_train = np.array(feats_train)
labels_train = np.array(labels_train)
feats_test = []
labels_test = []
for i in range(k * n_q):
data = torch.from_numpy(np.expand_dims(data_query[i], axis=0))
label = int(label_query[i])
data = data.permute(0, 2, 1).to(device)
data = torch.cat((data, data))
with torch.no_grad():
feat = model.backbone(data)[0][0, :]
feat = feat.detach().cpu().numpy().tolist()
feats_test.append(feat)
labels_test.append(label)
feats_test = np.array(feats_test)
labels_test = np.array(labels_test)
# scaler = MinMaxScaler()
scaler = StandardScaler()
scaled = scaler.fit_transform(feats_train)
model_tl = SVC(kernel='linear')
model_tl.fit(scaled, labels_train)
# model_tl.fit(feats_train, labels_train)
test_scaled = scaler.transform(feats_test)
# accuracy = model_tl.score(feats_test, labels_test) * 100
accuracy = model_tl.score(test_scaled, labels_test) * 100
acc.append(accuracy)
print('{} +/- {}'.format(np.mean(acc), np.std(acc)))