-
Notifications
You must be signed in to change notification settings - Fork 195
/
number.rs
443 lines (374 loc) · 15.2 KB
/
number.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use std::borrow::Cow;
use crate::front::wgsl::error::NumberError;
use crate::front::wgsl::parse::lexer::Token;
/// When using this type assume no Abstract Int/Float for now
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Number {
/// Abstract Int (-2^63 ≤ i < 2^63)
AbstractInt(i64),
/// Abstract Float (IEEE-754 binary64)
AbstractFloat(f64),
/// Concrete i32
I32(i32),
/// Concrete u32
U32(u32),
/// Concrete f32
F32(f32),
}
impl Number {
/// Convert abstract numbers to a plausible concrete counterpart.
///
/// Return concrete numbers unchanged. If the conversion would be
/// lossy, return an error.
fn abstract_to_concrete(self) -> Result<Number, NumberError> {
match self {
Number::AbstractInt(num) => i32::try_from(num)
.map(Number::I32)
.map_err(|_| NumberError::NotRepresentable),
Number::AbstractFloat(num) => {
let num = num as f32;
if num.is_finite() {
Ok(Number::F32(num))
} else {
Err(NumberError::NotRepresentable)
}
}
num => Ok(num),
}
}
}
// TODO: when implementing Creation-Time Expressions, remove the ability to match the minus sign
pub(in crate::front::wgsl) fn consume_number(input: &str) -> (Token<'_>, &str) {
let (result, rest) = parse(input);
(
Token::Number(result.and_then(Number::abstract_to_concrete)),
rest,
)
}
enum Kind {
Int(IntKind),
Float(FloatKind),
}
enum IntKind {
I32,
U32,
}
enum FloatKind {
F32,
F16,
}
// The following regexes (from the WGSL spec) will be matched:
// int_literal:
// | / 0 [iu]? /
// | / [1-9][0-9]* [iu]? /
// | / 0[xX][0-9a-fA-F]+ [iu]? /
// decimal_float_literal:
// | / 0 [fh] /
// | / [1-9][0-9]* [fh] /
// | / [0-9]* \.[0-9]+ ([eE][+-]?[0-9]+)? [fh]? /
// | / [0-9]+ \.[0-9]* ([eE][+-]?[0-9]+)? [fh]? /
// | / [0-9]+ [eE][+-]?[0-9]+ [fh]? /
// hex_float_literal:
// | / 0[xX][0-9a-fA-F]* \.[0-9a-fA-F]+ ([pP][+-]?[0-9]+ [fh]?)? /
// | / 0[xX][0-9a-fA-F]+ \.[0-9a-fA-F]* ([pP][+-]?[0-9]+ [fh]?)? /
// | / 0[xX][0-9a-fA-F]+ [pP][+-]?[0-9]+ [fh]? /
// You could visualize the regex below via https://debuggex.com to get a rough idea what `parse` is doing
// -?(?:0[xX](?:([0-9a-fA-F]+\.[0-9a-fA-F]*|[0-9a-fA-F]*\.[0-9a-fA-F]+)(?:([pP][+-]?[0-9]+)([fh]?))?|([0-9a-fA-F]+)([pP][+-]?[0-9]+)([fh]?)|([0-9a-fA-F]+)([iu]?))|((?:[0-9]+[eE][+-]?[0-9]+|(?:[0-9]+\.[0-9]*|[0-9]*\.[0-9]+)(?:[eE][+-]?[0-9]+)?))([fh]?)|((?:[0-9]|[1-9][0-9]+))([iufh]?))
fn parse(input: &str) -> (Result<Number, NumberError>, &str) {
/// returns `true` and consumes `X` bytes from the given byte buffer
/// if the given `X` nr of patterns are found at the start of the buffer
macro_rules! consume {
($bytes:ident, $($pattern:pat),*) => {
match $bytes {
&[$($pattern),*, ref rest @ ..] => { $bytes = rest; true },
_ => false,
}
};
}
/// consumes one byte from the given byte buffer
/// if one of the given patterns are found at the start of the buffer
/// returning the corresponding expr for the matched pattern
macro_rules! consume_map {
($bytes:ident, [$($pattern:pat_param => $to:expr),*]) => {
match $bytes {
$( &[$pattern, ref rest @ ..] => { $bytes = rest; Some($to) }, )*
_ => None,
}
};
}
/// consumes all consecutive bytes matched by the `0-9` pattern from the given byte buffer
/// returning the number of consumed bytes
macro_rules! consume_dec_digits {
($bytes:ident) => {{
let start_len = $bytes.len();
while let &[b'0'..=b'9', ref rest @ ..] = $bytes {
$bytes = rest;
}
start_len - $bytes.len()
}};
}
/// consumes all consecutive bytes matched by the `0-9 | a-f | A-F` pattern from the given byte buffer
/// returning the number of consumed bytes
macro_rules! consume_hex_digits {
($bytes:ident) => {{
let start_len = $bytes.len();
while let &[b'0'..=b'9' | b'a'..=b'f' | b'A'..=b'F', ref rest @ ..] = $bytes {
$bytes = rest;
}
start_len - $bytes.len()
}};
}
/// maps the given `&[u8]` (tail of the initial `input: &str`) to a `&str`
macro_rules! rest_to_str {
($bytes:ident) => {
&input[input.len() - $bytes.len()..]
};
}
struct ExtractSubStr<'a>(&'a str);
impl<'a> ExtractSubStr<'a> {
/// given an `input` and a `start` (tail of the `input`)
/// creates a new [`ExtractSubStr`](`Self`)
fn start(input: &'a str, start: &'a [u8]) -> Self {
let start = input.len() - start.len();
Self(&input[start..])
}
/// given an `end` (tail of the initial `input`)
/// returns a substring of `input`
fn end(&self, end: &'a [u8]) -> &'a str {
let end = self.0.len() - end.len();
&self.0[..end]
}
}
let mut bytes = input.as_bytes();
let general_extract = ExtractSubStr::start(input, bytes);
let is_negative = consume!(bytes, b'-');
if consume!(bytes, b'0', b'x' | b'X') {
let digits_extract = ExtractSubStr::start(input, bytes);
let consumed = consume_hex_digits!(bytes);
if consume!(bytes, b'.') {
let consumed_after_period = consume_hex_digits!(bytes);
if consumed + consumed_after_period == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let significand = general_extract.end(bytes);
if consume!(bytes, b'p' | b'P') {
consume!(bytes, b'+' | b'-');
let consumed = consume_dec_digits!(bytes);
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let number = general_extract.end(bytes);
let kind = consume_map!(bytes, [b'f' => FloatKind::F32, b'h' => FloatKind::F16]);
(parse_hex_float(number, kind), rest_to_str!(bytes))
} else {
(
parse_hex_float_missing_exponent(significand, None),
rest_to_str!(bytes),
)
}
} else {
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let significand = general_extract.end(bytes);
let digits = digits_extract.end(bytes);
let exp_extract = ExtractSubStr::start(input, bytes);
if consume!(bytes, b'p' | b'P') {
consume!(bytes, b'+' | b'-');
let consumed = consume_dec_digits!(bytes);
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let exponent = exp_extract.end(bytes);
let kind = consume_map!(bytes, [b'f' => FloatKind::F32, b'h' => FloatKind::F16]);
(
parse_hex_float_missing_period(significand, exponent, kind),
rest_to_str!(bytes),
)
} else {
let kind = consume_map!(bytes, [b'i' => IntKind::I32, b'u' => IntKind::U32]);
(
parse_hex_int(is_negative, digits, kind),
rest_to_str!(bytes),
)
}
}
} else {
let is_first_zero = bytes.first() == Some(&b'0');
let consumed = consume_dec_digits!(bytes);
if consume!(bytes, b'.') {
let consumed_after_period = consume_dec_digits!(bytes);
if consumed + consumed_after_period == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
if consume!(bytes, b'e' | b'E') {
consume!(bytes, b'+' | b'-');
let consumed = consume_dec_digits!(bytes);
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
}
let number = general_extract.end(bytes);
let kind = consume_map!(bytes, [b'f' => FloatKind::F32, b'h' => FloatKind::F16]);
(parse_dec_float(number, kind), rest_to_str!(bytes))
} else {
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
if consume!(bytes, b'e' | b'E') {
consume!(bytes, b'+' | b'-');
let consumed = consume_dec_digits!(bytes);
if consumed == 0 {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let number = general_extract.end(bytes);
let kind = consume_map!(bytes, [b'f' => FloatKind::F32, b'h' => FloatKind::F16]);
(parse_dec_float(number, kind), rest_to_str!(bytes))
} else {
// make sure the multi-digit numbers don't start with zero
if consumed > 1 && is_first_zero {
return (Err(NumberError::Invalid), rest_to_str!(bytes));
}
let digits_with_sign = general_extract.end(bytes);
let kind = consume_map!(bytes, [
b'i' => Kind::Int(IntKind::I32),
b'u' => Kind::Int(IntKind::U32),
b'f' => Kind::Float(FloatKind::F32),
b'h' => Kind::Float(FloatKind::F16)
]);
(
parse_dec(is_negative, digits_with_sign, kind),
rest_to_str!(bytes),
)
}
}
}
}
fn parse_hex_float_missing_exponent(
// format: -?0[xX] ( [0-9a-fA-F]+\.[0-9a-fA-F]* | [0-9a-fA-F]*\.[0-9a-fA-F]+ )
significand: &str,
kind: Option<FloatKind>,
) -> Result<Number, NumberError> {
let hexf_input = format!("{}{}", significand, "p0");
parse_hex_float(&hexf_input, kind)
}
fn parse_hex_float_missing_period(
// format: -?0[xX] [0-9a-fA-F]+
significand: &str,
// format: [pP][+-]?[0-9]+
exponent: &str,
kind: Option<FloatKind>,
) -> Result<Number, NumberError> {
let hexf_input = format!("{significand}.{exponent}");
parse_hex_float(&hexf_input, kind)
}
fn parse_hex_int(
is_negative: bool,
// format: [0-9a-fA-F]+
digits: &str,
kind: Option<IntKind>,
) -> Result<Number, NumberError> {
let digits_with_sign = if is_negative {
Cow::Owned(format!("-{digits}"))
} else {
Cow::Borrowed(digits)
};
parse_int(&digits_with_sign, kind, 16, is_negative)
}
fn parse_dec(
is_negative: bool,
// format: -? ( [0-9] | [1-9][0-9]+ )
digits_with_sign: &str,
kind: Option<Kind>,
) -> Result<Number, NumberError> {
match kind {
None => parse_int(digits_with_sign, None, 10, is_negative),
Some(Kind::Int(kind)) => parse_int(digits_with_sign, Some(kind), 10, is_negative),
Some(Kind::Float(kind)) => parse_dec_float(digits_with_sign, Some(kind)),
}
}
// Float parsing notes
// The following chapters of IEEE 754-2019 are relevant:
//
// 7.4 Overflow (largest finite number is exceeded by what would have been
// the rounded floating-point result were the exponent range unbounded)
//
// 7.5 Underflow (tiny non-zero result is detected;
// for decimal formats tininess is detected before rounding when a non-zero result
// computed as though both the exponent range and the precision were unbounded
// would lie strictly between 2^−126)
//
// 7.6 Inexact (rounded result differs from what would have been computed
// were both exponent range and precision unbounded)
// The WGSL spec requires us to error:
// on overflow for decimal floating point literals
// on overflow and inexact for hexadecimal floating point literals
// (underflow is not mentioned)
// hexf_parse errors on overflow, underflow, inexact
// rust std lib float from str handles overflow, underflow, inexact transparently (rounds and will not error)
// Therefore we only check for overflow manually for decimal floating point literals
// input format: -?0[xX] ( [0-9a-fA-F]+\.[0-9a-fA-F]* | [0-9a-fA-F]*\.[0-9a-fA-F]+ ) [pP][+-]?[0-9]+
fn parse_hex_float(input: &str, kind: Option<FloatKind>) -> Result<Number, NumberError> {
match kind {
None => match hexf_parse::parse_hexf64(input, false) {
Ok(num) => Ok(Number::AbstractFloat(num)),
// can only be ParseHexfErrorKind::Inexact but we can't check since it's private
_ => Err(NumberError::NotRepresentable),
},
Some(FloatKind::F32) => match hexf_parse::parse_hexf32(input, false) {
Ok(num) => Ok(Number::F32(num)),
// can only be ParseHexfErrorKind::Inexact but we can't check since it's private
_ => Err(NumberError::NotRepresentable),
},
Some(FloatKind::F16) => Err(NumberError::UnimplementedF16),
}
}
// input format: -? ( [0-9]+\.[0-9]* | [0-9]*\.[0-9]+ ) ([eE][+-]?[0-9]+)?
// | -? [0-9]+ [eE][+-]?[0-9]+
fn parse_dec_float(input: &str, kind: Option<FloatKind>) -> Result<Number, NumberError> {
match kind {
None => {
let num = input.parse::<f64>().unwrap(); // will never fail
num.is_finite()
.then_some(Number::AbstractFloat(num))
.ok_or(NumberError::NotRepresentable)
}
Some(FloatKind::F32) => {
let num = input.parse::<f32>().unwrap(); // will never fail
num.is_finite()
.then_some(Number::F32(num))
.ok_or(NumberError::NotRepresentable)
}
Some(FloatKind::F16) => Err(NumberError::UnimplementedF16),
}
}
fn parse_int(
input: &str,
kind: Option<IntKind>,
radix: u32,
is_negative: bool,
) -> Result<Number, NumberError> {
fn map_err(e: core::num::ParseIntError) -> NumberError {
match *e.kind() {
core::num::IntErrorKind::PosOverflow | core::num::IntErrorKind::NegOverflow => {
NumberError::NotRepresentable
}
_ => unreachable!(),
}
}
match kind {
None => match i64::from_str_radix(input, radix) {
Ok(num) => Ok(Number::AbstractInt(num)),
Err(e) => Err(map_err(e)),
},
Some(IntKind::I32) => match i32::from_str_radix(input, radix) {
Ok(num) => Ok(Number::I32(num)),
Err(e) => Err(map_err(e)),
},
Some(IntKind::U32) if is_negative => Err(NumberError::NotRepresentable),
Some(IntKind::U32) => match u32::from_str_radix(input, radix) {
Ok(num) => Ok(Number::U32(num)),
Err(e) => Err(map_err(e)),
},
}
}